1. Aminopeptidases in Caenorhabditis elegans and Panagrellus redivivus: detection using peptide and non-peptide substrates
E P Masler J Helminthol. 2002 Mar;76(1):45-52. doi: 10.1079/JOH200193.
Aminopeptidase activities were detected in extracts of the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus using the aminoacyl substrate L-alanine-4-nitroanilide. The activities exhibited similarities in Km (C. elegans = 2.22 mM; P. redivivus = 2.09 mM) and specific activity (C. elegans = 1.38 +/- 0.43 mAU min(-1) x g(-1); P. redivivus, 1.23 +/- 0.18m AU min(-1) microg(-1). Each is inhibited competitively by amastatin (C. elegans IC50 = 0.46 microM; P. redivivus IC50 = 15.90 microM) and non-competitively by leuhistin (C. elegans IC50 = 3.00 microM; P. redivivus IC50 = 37.35 microM). The bioactive peptides adipokinetic hormone and substance P decrease the apparent aminopeptidase activities of each extract suggesting that the peptides compete with the Ala-pNA as substrates. With each extract, adipokinetic hormone appeared to be the more effective substrate. Digestion of adipokinetic hormone by C. elegans and P. redivivus extracts in the presence and absence of 1 mM amastatin produced distinct chromatographic profiles that suggest different digestion patterns for the two species. However, amastatin had clear effects on chromatographic profiles from each species indicating that an aminopeptidase is involved in the digestion of the peptide substrates. The data presented indicate that extracts of free-living nematodes are capable of metabolizing peptide hormones, and that this metabolism involves substrate-selective aminopeptidases.
2. Metabolites Associated With Malnutrition in the Intensive Care Unit Are Also Associated With 28-Day Mortality
Kris M Mogensen, et al. JPEN J Parenter Enteral Nutr. 2017 Feb;41(2):188-197. doi: 10.1177/0148607116656164. Epub 2016 Jul 19.
Background: We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. Materials and methods: We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Results: Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Conclusion: Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.
3. L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide--a chromogenic substrate for thiol proteinase assay
Filippova IYu, E N Lysogorskaya, E S Oksenoit, G N Rudenskaya, V M Stepanov Anal Biochem. 1984 Dec;143(2):293-7. doi: 10.1016/0003-2697(84)90665-1.
L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide (PFLNA)--a convenient chromogenic substrate for assay of thiol proteinases papain, ficin, and bromelain--was prepared by enzymatic synthesis with chymotrypsin as a catalyst. The thiol proteinases hydrolyze PFLNA with the liberation of p-nitroaniline, estimated spectrophotometrically by its absorbance at 410 nm. The phenylalanine residue in the P2 position of PFLNA meets the specificity demands of thiol proteinases. The following values of Km were found for PFLNA hydrolysis: by papain, 0.34 mM; by ficin, 0.43 mM; by bromelain, 0.30 mM. This substrate was successfully applied to monitor thiol proteinase affinity chromatography on bacitracin-Sepharose, which resulted in a 2- to 4-fold purification from commercial preparations.