Need Assistance?
  • US & Canada:
    +
  • UK: +

LL-37 (37-1)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

LL-37 (37-1), reverse LL-37, acts as a control peptide.

Category
Functional Peptides
Catalog number
BAT-014771
CAS number
2022972-70-7
Molecular Formula
C205H340N60O53
Molecular Weight
4493.33
Synonyms
Cationic Antimicrobial Protein 18 (170-134) (human); hCAP-18 (170-134); H-Ser-Glu-Thr-Arg-Pro-Val-Leu-Asn-Arg-Leu-Phe-Asp-Lys-Ile-Arg-Gln-Val-Ile-Arg-Lys-Phe-Glu-Lys-Gly-Ile-Lys-Glu-Lys-Ser-Lys-Arg-Phe-Phe-Asp-Gly-Leu-Leu-OH
Appearance
White Powder
Purity
≥95%
Sequence
SETRPVLNRLFDKIRQVIRKFEKGIKEKSKRFFDGLL
Storage
Store at -20°C
Solubility
Soluble in DMSO, Water
1. The host defense peptide LL-37 is internalized by human periodontal ligament cells and prevents LPS-induced MCP-1 production
Alexandra Aidoukovitch, Emma Anders, Sara Dahl, Daniel Nebel, Daniel Svensson, Bengt-Olof Nilsson J Periodontal Res. 2019 Dec;54(6):662-670. doi: 10.1111/jre.12667. Epub 2019 May 16.
Objective: The human host defense peptide LL-37 both shows antimicrobial effects and modulates host cell properties. Here, we assess the effects of synthesized LL-37 on lipopolysaccharide (LPS)-induced inflammation in human periodontal ligament (PDL) cells and investigates underlying mechanisms. Background: LL-37 has been detected in the periodontal tissues, but its functional importance for PDL cell innate immune responses is not known. Methods: Human PDL cells were obtained from premolars extracted on orthodontic indications. Cellular pro-inflammatory monocyte chemoattractant protein-1 (MCP-1) mRNA expression was determined using quantitative real-time RT-PCR. MCP-1 protein production was assessed by western blot and ELISA. Internalization of LL-37 by PDL cells was visualized by immunocytochemistry. Nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activity was assessed by western blot of phosphorylated p65, phosphorylated p105, and IκBα proteins. Binding of LL-37 to PDL cell DNA was determined by isolation and purification of DNA and dot blot for LL-37 immunoreactivity. Results: Treatment with LL-37 (1 µmol/L) for 24 hours prevented LPS-induced stimulation of MCP-1 expression analyzed both on transcript and on protein levels. Stimulation with LL-37 (1 µmol/L) for 24 hours had no effect on toll-like receptor (TLR)2 and TLR4 transcript expression, suggesting that LL-37 acts downstream of the TLRs. Preincubation with LL-37 for 60 minutes followed by stimulation with LPS for 24 hours in the absence of LL-37 completely prevented LPS-evoked MCP-1 transcript expression, implying that LL-37 acts intracellularly and not via binding and neutralization of LPS. In PDL cells stimulated with LL-37 for 60 minutes, the peptide was internalized as demonstrated by immunocytochemistry, suggesting an intracellular mechanism of action. LL-37 immunoreactivity was observed both in the cytosol and in the nucleus. Downregulation of LPS-induced MCP-1 by LL-37 was not mediated by reduction in NF-κB activity as shown by unaltered expression of phosphorylated p65, phosphorylated p105, and IκBα NF-κB proteins in the presence of LL-37. Immunoreactivity for LL-37 was observed in PDL cell DNA treated with but not without 0.1 and 1 µmol/L LL-37 for 60 minutes in vitro. Conclusion: LL-37 abolishes LPS-induced MCP-1 production in human PDL cells through an intracellular, NF-κB-independent mechanism which probably involves direct interaction between LL-37 and DNA.
2. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria
Oscar Cirioni, et al. Antimicrob Agents Chemother. 2006 May;50(5):1672-9. doi: 10.1128/AAC.50.5.1672-1679.2006.
We investigated the efficacy of LL-37, the C-terminal part of the only cathelicidin in humans identified to date (termed human cationic antimicrobial protein), in three experimental rat models of gram-negative sepsis. Adult male Wistar rats (i) were given an intraperitoneal injection of 1 mg Escherichia coli 0111:B4 LPS, (ii) were given 2 x 10(10) CFU of Escherichia coli ATCC 25922, or (iii) had intra-abdominal sepsis induced via cecal ligation and puncture. For each model, all animals were randomized to receive intravenously isotonic sodium chloride solution, 1-mg/kg LL-37, 1-mg/kg polymyxin B, 20-mg/kg imipenem, or 60-mg/kg piperacillin. Lethality; growth of bacteria in blood, peritoneum, spleen, liver, and mesenteric lymph nodes; and endotoxin and tumor necrosis factor alpha (TNF-alpha) concentrations in plasma were evaluated. All compounds reduced lethality compared to levels in controls. Endotoxin and TNF-alpha plasma levels were significantly higher in conventional antibiotic-treated rats than in LL-37- and polymyxin B-treated animals. All drugs tested significantly reduced bacterial growth compared to saline treatment. No statistically significant differences between LL-37 and polymyxin B were noted for antimicrobial and antiendotoxin activities. LL-37 and imipenem proved to be the most effective treatments in reducing all variables measured. Due to its multifunctional properties, LL-37 may become an important future consideration for the treatment of sepsis.
3. Enhanced LL-37 expression following vitamin D supplementation in patients with cirrhosis and spontaneous bacterial peritonitis
Chong Zhang, Lianrong Zhao, Yang Ding, Qiuju Sheng, Han Bai, Ziying An, Tingting Xia, Jingyan Wang, Xiaoguang Dou Liver Int. 2016 Jan;36(1):68-75. doi: 10.1111/liv.12888. Epub 2015 Sep 18.
Background & aims: The morbidity and mortality of spontaneous bacterial peritonitis (SBP) are high among patients with cirrhosis; however, the mechanisms of SBP pathogenesis are poorly understood. This study aimed to determine the role of the vitamin D-LL-37 pathway in the pathogenesis and treatment in patients with cirrhosis and SBP. Methods: Serum 25-hydroxyvitamin D concentrations of 119 patients with chronic liver diseases were tested. Vitamin D receptor (VDR) and LL-37 in peritoneal leucocytes of cirrhotic and ascitic patients with SBP were detected and compared with those without SBP. Then the peritoneal macrophages of non-infected patients were cultured and activated by lipopolysaccharide (LPS) to analyse the changes of VDR and LL-37 expressions after incubation with vitamin D. Results: Vitamin D deficiency or insufficiency was found in all of patients with cirrhosis. LPS inhibited VDR and LL-37 expression in peritoneal macrophages [1.3-fold decrease (P = 0.003) and 20-fold decrease (P = 0.010) respectively]. However, vitamin D could reverse the inhibition of both VDR and LL-37 [1.5-fold increase (P = 0.001) and 2000-fold increase (P < 0.001) respectively]. The effect of the incubation time following vitamin D supplementation was significant for LL-37 expression, with a peak expression found at 36 h (P < 0.001). Conclusions: When vitamin D levels were low, bacteria inhibited VDR and LL-37 responses in peritoneal macrophages as a mechanism to evade antibacterial defence. Vitamin D supplementation could up-regulate peritoneal macrophage VDR and LL-37 expressions, which resulted in an enhanced immunological defence against SBP in patients with cirrhosis and ascites.
Online Inquiry
Verification code
Inquiry Basket