Need Assistance?
  • US & Canada:
    +
  • UK: +

LL-37, Human

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

LL-37 is a cationic and α-helical antimicrobial peptide. It can inhibit growth of Gram-positive E. coli D21 and Gram-negative B. megatarium in a concentration-dependent manner. LL-37 can promote wound healing following skin-targeted electroporation of a plasmid encoding hCAP-18/LL-37 in mice.

Category
Functional Peptides
Catalog number
BAT-006133
CAS number
154947-66-7
Molecular Formula
C205H340N60O53
Molecular Weight
4493.25
LL-37, Human
Size Price Stock Quantity
1 mg $199 In stock
5 mg $629 In stock
IUPAC Name
(4S)-5-[[(2S)-6-amino-1-[[(2S,3S)-1-[[2-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-5-carbamimidamido-1-[[(2S,3R)-1-[[(2S)-4-carboxy-1-[[(1S)-1-carboxy-2-hydroxyethyl]amino]-1-oxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-5-oxopentanoic acid
Synonyms
LL 37; LL37; L-leucyl-L-leucyl-glycyl-L-alpha-aspartyl-L-phenylalanyl-L-phenylalanyl-L-arginyl-L-lysyl-L-seryl-L-lysyl-L-alpha-glutamyl-L-lysyl-L-isoleucyl-glycyl-L-lysyl-L-alpha-glutamyl-L-phenylalanyl-L-lysyl-L-arginyl-L-isoleucyl-L-valyl-L-glutaminyl-L-arginyl-L-isoleucyl-L-lysyl-L-alpha-aspartyl-L-phenylalanyl-L-leucyl-L-arginyl-L-asparagyl-L-leucyl-L-valyl-L-prolyl-L-arginyl-L-threonyl-L-alpha-glutamyl-L-serine; H-Leu-Leu-Gly-Asp-Phe-Phe-Arg-Lys-Ser-Lys-Glu-Lys-Ile-Gly-Lys-Glu-Phe-Lys-Arg-Ile-Val-Gln-Arg-Ile-Lys-Asp-Phe-Leu-Arg-Asn-Leu-Val-Pro-Arg-Thr-Glu-Ser-OH; Cathelicidin; Bac4; Cap-18
Appearance
White Lyophilized Powder
Purity
98%
Sequence
LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES
Storage
Store at -20°C
Solubility
Soluble in Water (1 mg/mL)
InChI
InChI=1S/C205H340N60O53/c1-20-114(16)162(261-179(296)128(66-40-46-86-211)235-176(293)135(74-78-155(273)274)243-170(287)125(63-37-43-83-208)241-192(309)148(106-266)257-174(291)126(64-38-44-84-209)234-171(288)129(67-47-87-225-201(215)216)240-185(302)142(98-119-55-29-24-30-56-119)252-187(304)144(100-121-59-33-26-34-60-121)253-189(306)146(102-158(279)280)233-154(272)104-230-167(284)138(94-109(6)7)248-166(283)122(212)93-108(4)5)194(311)231-105-153(271)232-123(61-35-41-81-206)168(285)242-136(75-79-156(275)276)177(294)251-141(97-118-53-27-23-28-54-118)184(301)238-124(62-36-42-82-207)169(286)236-131(69-49-89-227-203(219)220)181(298)263-164(116(18)22-3)197(314)259-160(112(12)13)195(312)246-134(73-77-151(213)269)175(292)237-132(70-50-90-228-204(221)222)180(297)262-163(115(17)21-2)196(313)245-127(65-39-45-85-210)172(289)256-147(103-159(281)282)190(307)254-143(99-120-57-31-25-32-58-120)186(303)249-139(95-110(8)9)183(300)239-130(68-48-88-226-202(217)218)173(290)255-145(101-152(214)270)188(305)250-140(96-111(10)11)191(308)260-161(113(14)15)199(316)265-92-52-72-150(265)193(310)244-133(71-51-91-229-205(223)224)182(299)264-165(117(19)268)198(315)247-137(76-80-157(277)278)178(295)258-149(107-267)200(317)318/h23-34,53-60,108-117,122-150,160-165,266-268H,20-22,35-52,61-107,206-212H2,1-19H3,(H2,213,269)(H2,214,270)(H,230,284)(H,231,311)(H,232,271)(H,233,272)(H,234,288)(H,235,293)(H,236,286)(H,237,292)(H,238,301)(H,239,300)(H,240,302)(H,241,309)(H,242,285)(H,243,287)(H,244,310)(H,245,313)(H,246,312)(H,247,315)(H,248,283)(H,249,303)(H,250,305)(H,251,294)(H,252,304)(H,253,306)(H,254,307)(H,255,290)(H,256,289)(H,257,291)(H,258,295)(H,259,314)(H,260,308)(H,261,296)(H,262,297)(H,263,298)(H,264,299)(H,273,274)(H,275,276)(H,277,278)(H,279,280)(H,281,282)(H,317,318)(H4,215,216,225)(H4,217,218,226)(H4,219,220,227)(H4,221,222,228)(H4,223,224,229)/t114-,115-,116-,117+,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-,160-,161-,162-,163-,164-,165-/m0/s1
InChI Key
POIUWJQBRNEFGX-XAMSXPGMSA-N
Canonical SMILES
CCC(C)C(C(=O)NCC(=O)NC(CCCCN)C(=O)NC(CCC(=O)O)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)CC)C(=O)NC(C(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)CC)C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)N3CCCC3C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)O)C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC4=CC=CC=C4)NC(=O)C(CC5=CC=CC=C5)NC(=O)C(CC(=O)O)NC(=O)CNC(=O)C(CC(C)C)NC(=O)C(CC(C)C)N
1.Induction of the human cathelicidin LL-37 as a novel treatment against bacterial infections.
van der Does AM;Bergman P;Agerberth B;Lindbom L J Leukoc Biol. 2012 Oct;92(4):735-42. doi: 10.1189/jlb.0412178. Epub 2012 Jun 13.
As traditional antibiotics gradually become inefficient, there is a high demand for development of anti-infectives with a mechanism of action that is different from existing antibiotics. Current antibiotics target the pathogen directly, thereby contributing to the selection of multidrug-resistant bacterial strains. AMPs, such as the human cathelicidin LL-37, are small cationic peptides that are part of host defense. They eliminate microbes through diverse mechanisms, thereby contributing to resolution of infections and maintenance of epithelial barrier function. The multiplicity of these mechanisms of action might be a key to restrict the development of resistant bacterial strains. The discovery of LL-37-inducing components, such as butyrate and vitamin D(3), has opened new avenues to prevent or treat infections. Butyrate and vitamin D(3) are potent inducers of LL-37 but in addition, have many other effects on host immunity. Here, we summarize current data on the effects that LL-37 and its inducers display on the innate immune response and discuss the feasibility for development of these inducers as possible drugs to prevent or treat infections.
2.Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure.
Epand RM;Epand RF;Arnusch CJ;Papahadjopoulos-Sternberg B;Wang G;Shai Y Biochim Biophys Acta. 2010 Jun;1798(6):1272-80. doi: 10.1016/j.bbamem.2010.03.012. Epub 2010 Mar 17.
Three Arg-rich nonapeptides, containing the same amino acid composition but different sequences, PFWRIRIRR-amide (PR-9), RRPFWIIRR-amide (RR-9) and PRFRWRIRI-amide (PI-9), are able to induce segregation of anionic lipids from zwitterionic lipids, as shown by changes in the phase transition properties of lipid mixtures detected by differential scanning calorimetry and freeze fracture electron microscopy. The relative Minimal Inhibitory Concentration (MIC) of these three peptides against several strains of Gram positive bacteria correlated well with the extent to which the lipid composition of the bacterial membrane facilitated peptide-induced clustering of anionic lipids. The lower activity of these three peptides against Gram negative bacteria could be explained by the retention of these peptides in the LPS layer. The membrane morphologies produced by PR-9 as well as by a cathelicidin fragment, KR-12 that had previously been shown to induce anionic lipid clustering, was directly visualized using freeze fracture electron microscopy. This work shows the insensitivity of phase segregation to the specific arrangement of the cationic charges in the peptide sequence as well as to their tendency to form different secondary structures.
3.Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation.
Simon D;Radonjic-Hösli S;Straumann A;Yousefi S;Simon HU Allergy. 2015 Apr;70(4):443-52. doi: 10.1111/all.12570. Epub 2015 Jan 26.
BACKGROUND: ;Eosinophilic esophagitis (EoE) exhibits esophageal dysfunction owing to an eosinophil-predominant inflammation. Activated eosinophils generate eosinophil extracellular traps (EETs) able to kill bacteria. There is evidence of an impaired barrier function in EoE that might allow pathogens to invade the esophagus. This study aimed to investigate the presence and distribution of EETs in esophageal tissues from EoE patients and their association with possible epithelial barrier defects.;METHODS: ;Anonymized tissue samples from 18 patients with active EoE were analyzed. The presence of DNA nets associated with eosinophil granule proteins forming EETs and the expression of filaggrin, the protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI), antimicrobial peptides, and cytokines were evaluated by confocal microscopy following immune fluorescence staining techniques.;RESULTS: ;Eosinophil extracellular trap formation occurred frequently and was detected in all EoE samples correlating with the numbers of infiltrating eosinophils. While the expression of both filaggrin and LEKTI was reduced, epithelial antimicrobial peptides (human beta-defensin-2, human beta-defensin-3, cathelicidin LL-37, psoriasin) and cytokines (TSLP, IL-25, IL-32, IL-33) were elevated in EoE as compared to normal esophageal tissues.
Online Inquiry
Verification code
Inquiry Basket