Need Assistance?
  • US & Canada:
    +
  • UK: +

MMGP1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

MMGP1 is an antifungal peptide which was found to possess potent antifungal activity against C. albicans.

Category
Functional Peptides
Catalog number
BAT-011933
Sequence
MLWSASMRIFASAFSTRGLGTRMLMYCSLPSRCWRK
1. Direct cell penetration of the antifungal peptide, MMGP1, in Candida albicans
Muthuirulan Pushpanathan, et al. J Pept Sci. 2012 Nov;18(11):657-60. doi: 10.1002/psc.2445.
An antifungal peptide, MMGP1, was recently identified from marine metagenome. The mechanism of cellular internalization of this peptide in Candida albicans was studied using fluorescein 5-isothiocynate (Sigma, California, USA) labeling followed by fluorescence microscopy and flow cytometry analyses. The peptide could enter C. albicans cells even at 4 °C, where all energy-dependent transport mechanisms are blocked. In addition, the peptide internalization was not affected by the endocytic inhibitor, sodium azide. The kinetic study has shown that the peptide was initially localized on cell membrane and subsequently internalized into cytosol. The MMGP1 treatment exhibited time-dependent cytotoxicity in C. albicans as evidenced by SYTOX Green (Molecular Probes Inc., Eugene, Oreg) uptake.
2. Critical Evaluation and Compilation of Physicochemical Determinants and Membrane Interactions of MMGP1 Antifungal Peptide
Muthuirulan Pushpanathan, Sharma Pooja, Paramasamy Gunasekaran, Jeyaprakash Rajendhran Mol Pharm. 2016 May 2;13(5):1656-67. doi: 10.1021/acs.molpharmaceut.6b00086. Epub 2016 Mar 29.
A growing issue of pathogen resistance to antibiotics has fostered the development of innovative approaches for novel drug development. Here, we report the physicochemical and biological properties of an antifungal peptide, MMGP1, based on computational analysis. Computation of physicochemical properties has revealed that the natural biological activities of MMGP1 are coordinated by its intrinsic properties such as net positive charge (+5.04), amphipathicity, high hydrophobicity, low hydrophobic moment, and higher isoelectric point (11.915). Prediction of aggregation hot spots in MMGP1 had revealed the presence of potentially aggregation-prone segments that can nucleate in vivo aggregation (on the membrane), whereas no aggregating regions were predicted for in vitro aggregation (in solutions) of MMGP1. This ability of MMGP1 to form oligomeric aggregates on membrane further substantiates its direct-cell penetrating potency. Monte Carlo simulation of the interactions of MMGP1 in the aqueous phase and different membrane environments revealed that increasing the proportion of acidic lipids on membrane had led to increase in the peptide helicity. Furthermore, the peptide adopts energetically favorable transmembrane configuration, by inserting peptide loop and helix termini into the membrane containing >60% of anionic lipids. The charged lipid-based insertion of MMGP1 into membrane might be responsible for the selectivity of peptide toward fungal cells. Additionally, MMGP1 possessed DNA-binding property. Computational docking has identified DNA-binding residues (TRP3, SER4, MET7, ARG8, PHE10, ALA11, GLY20, THR21, ARG22, MET23, TRP34, and LYS36) in MMGP1 crucial for its DNA-binding property. Furthermore, computational mutation analysis revealed that aromatic amino acids are crucial for in vivo aggregation, membrane insertion, and DNA-binding property of MMGP1. These data provide new insight into the molecular determinants of MMGP1 antifungal activity and also serves as the template for the design of novel peptide antibiotics.
3. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans
Muthuirulan Pushpanathan, Paramasamy Gunasekaran, Jeyaprakash Rajendhran PLoS One. 2013 Jul 2;8(7):e69316. doi: 10.1371/journal.pone.0069316. Print 2013.
Background: Development of resistant variants to existing antifungal drugs continues to be the serious problem in Candida albicans-induced fungal pathogenesis, which has a considerable impact on animal and human health. Identification and characterization of newer drugs against C. albicans is, therefore, essential. MMGP1 is a direct cell-penetrating peptide recently identified from marine metagenome, which was found to possess potent antifungal activity against C. albicans. Methodology/principal findings: In this study, we investigated the mechanism of antifungal action of MMGP1 against C. albicans. Agarose gel shift assay found the peptide to be having a remarkable DNA-binding ability. The modification of the absorption spectra and fluorescence quenching of the tryptophyl residue correspond to the stacking between indole ring and nucleotide bases. The formation of peptide-DNA complexes was confirmed by fluorescence quenching of SYTO 9 probe. The interaction of peptide with plasmid DNA afforded protection of DNA from enzymatic degradation by DNase I. In vitro transcription of mouse β-actin gene in the presence of peptide led to a decrease in the level of mRNA synthesis. The C. albicans treated with MMGP1 showed strong inhibition of biosynthetic incorporation of uridine analog 5-ethynyluridine (EU) into nascent RNA, suggesting the peptide's role in the inhibition of macromolecular synthesis. Furthermore, the peptide also induces endogenous accumulation of reactive oxygen species (ROS) in C. albicans. MMGP1 supplemented with glutathione showed an increased viability of C. albicans cells. The hyper-produced ROS by MMGP1 leads to increased levels of protein carbonyls and thiobarbituric acid reactive substances and it also causes dissipation of mitochondrial membrane potential and DNA fragmentation in C. albicans cells. Conclusion: And Significance: Therefore, the antifungal activity of MMGP1 could be attributed to its binding with DNA, causing inhibition of transcription followed by endogenous production of ROS, which triggers cascade of events that leads to cell death.
Online Inquiry
Verification code
Inquiry Basket