Need Assistance?
  • US & Canada:
    +
  • UK: +

MMK 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

MMK 1 is a potent and selective human formyl peptide receptor FPR2 agonist (EC50 = 1, 2 and > 10 000 nM at mFRP2, hFPR2 and hFPR1 respectively). Some findings showed that the transient rise in intracellular free calcium induced by MMK-1 involves both a release of calcium from intracellular stores and an opening of channels in the plasma membrane.

Category
Peptide Inhibitors
Catalog number
BAT-010816
CAS number
271246-66-3
Molecular Formula
C75H123N19O18S
Molecular Weight
1610.97
MMK 1
IUPAC Name
4-[(2-amino-4-methylpentanoyl)amino]-5-[[1-[[1-[[1-[[1-[[1-[[1-[[1-[[1-[[1-[[1-[(1-carboxy-3-methylsulfanylpropyl)amino]-3-methyl-1-oxobutan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
MMK 1; MMK1; MMK-1; (4S)-4-[[(2S)-2-amino-4-methylpentanoyl]amino]-5-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxy-3-methylsulfanylpropyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Appearance
White lyophilised solid
Sequence
LESXFRSLLFRVM
Storage
Store at -20°C
InChI
InChI=1S/C75H123N19O18S/c1-12-44(10)60(94-70(108)57(39-96)92-63(101)50(27-28-58(97)98)83-61(99)47(76)33-40(2)3)72(110)90-55(37-46-23-17-14-18-24-46)68(106)84-48(25-19-30-81-74(77)78)62(100)91-56(38-95)69(107)88-53(35-42(6)7)65(103)87-52(34-41(4)5)66(104)89-54(36-45-21-15-13-16-22-45)67(105)85-49(26-20-31-82-75(79)80)64(102)93-59(43(8)9)71(109)86-51(73(111)112)29-32-113-11/h13-18,21-24,40-44,47-57,59-60,95-96H,12,19-20,25-39,76H2,1-11H3,(H,83,99)(H,84,106)(H,85,105)(H,86,109)(H,87,103)(H,88,107)(H,89,104)(H,90,110)(H,91,100)(H,92,101)(H,93,102)(H,94,108)(H,97,98)(H,111,112)(H4,77,78,81)(H4,79,80,82)/t44-,47-,48-,49-,50-,51-,52-,53-,54-,55-,56-,57-,59-,60-/m0/s1
InChI Key
PWBQRCXCXXGUGY-AJOXZCOLSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(CCCN=C(N)N)C(=O)NC(C(C)C)C(=O)NC(CCSC)C(=O)O)NC(=O)C(CO)NC(=O)C(CCC(=O)O)NC(=O)C(CC(C)C)N
1.The FPR2-specific ligand MMK-1 activates the neutrophil NADPH-oxidase, but triggers no unique pathway for opening of plasma membrane calcium channels.
Karlsson J;Stenfeldt AL;Rabiet MJ;Bylund J;Forsman HF;Dahlgren C Cell Calcium. 2009 May;45(5):431-8. doi: 10.1016/j.ceca.2009.02.002. Epub 2009 Mar 17.
Human neutrophils express formyl peptide receptor 1 and 2 (FPR1 and FPR2), two highly homologous G-protein-coupled cell surface receptors important for the cellular recognition of chemotactic peptides. They share many functional as well as signal transduction features, but some fundamental differences have been described. One such difference was recently presented when the FPR2-specific ligand MMK-1 was shown to trigger a unique signal in neutrophils [S. Partida-Sanchez, P. Iribarren, M.E. Moreno-Garcia, et al., Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose, J. Immunol. 172 (2004) 1896-1906]. This signal bypassed the emptying of the intracellular calcium stores, a route normally used to open the store-operated calcium channels present in the plasma membrane of neutrophils. Instead, the binding of MMK-1 to FPR2 was shown to trigger a direct opening of the plasma membrane channels. In this report, we add MMK-1 to a large number of FPR2 ligands that activate the neutrophil superoxide-generating NADPH-oxidase. In contrast to earlier findings we show that the transient rise in intracellular free calcium induced by MMK-1 involves both a release of calcium from intracellular stores and an opening of channels in the plasma membrane.
2.Formyl-Peptide Receptor Agonists and Amorphous SiO
Tavano R;Segat D;Fedeli C;Malachin G;Lubian E;Mancin F;Papini E Nanobiomedicine (Rij). 2016 Jan 1;3:2. doi: 10.5772/62251. eCollection 2016 Jan-Dec.
We tested whether amorphous SiO;2;-NPs and formylpeptide receptor (FPRs) agonists synergistically activate human monocytes and neutrophil polymorphonuclear granulocytes (PMNs). Peptide ligands specifically binding to FPR1 (f-MLP) and to FPR2 (MMK-1, WKYMVM and WKYMVm) human isoforms did not modify the association of SiO;2;-NPs to both cell types or their cytotoxic effects. Similarly, the extent of CD80, CD86, CD83, ICAM-1 and MHCII expression in monocytes treated with SiO;2;-NPs was not significantly altered by any FPRs agonist. However, FPR1 stimulation with f-MLP strongly increased the secretion of IL-1β, IL-6 and IL-8 by human monocytes, and of IL-8 by PMNs in the presence of SiO;2;-NPs, due to the synergic stimulation of gene transcription. FPR2 agonists also up-modulated the production of IL-1β induced by monocytes treated with SiO;2;-NPs. In turn, SiO;2;-NPs increased the chemotaxis of PMNs toward FPR1-specific ligands, but not toward FPR2-specific ones. Conversely, the chemotaxis of monocytes toward FPR2-specific peptides was inhibited by SiO;2;-NPs. NADPH-oxidase activation triggered by FPR1- and FPR2-specific ligands in both cell types was not altered by SiO;2;-NPs. Microbial and tissue danger signals sensed by FPRs selectively amplified the functional responses of monocytes and PMN;S; to SiO;2;-NPs, and should be carefully considered in the assessment of the risk associated with nanoparticle exposure.
3.A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1.
Prat C;Bestebroer J;de Haas CJ;van Strijp JA;van Kessel KP J Immunol. 2006 Dec 1;177(11):8017-26.
Bacteria have developed mechanisms to escape the first line of host defense, which is constituted by the recruitment of phagocytes to the sites of bacterial invasion. We previously described the chemotaxis inhibitory protein of Staphylococcus aureus, a protein that blocks the activation of neutrophils via the formyl peptide receptor (FPR) and C5aR. We now describe a new protein from S. aureus that impaired the neutrophil responses to FPR-like1 (FPRL1) agonists. FPRL1 inhibitory protein (FLIPr) inhibited the calcium mobilization in neutrophils stimulated with MMK-1, WKYMVM, prion-protein fragment PrP(106-126), and amyloid beta(1-42). Stimulation with low concentrations of fMLP was partly inhibited. Directed migration was also completely prevented toward MMK-1 and partly toward fMLP. Fluorescence-labeled FLIPr efficiently bound to neutrophils, monocytes, B cells, and NK cells. HEK293 cells transfected with human C5aR, FPR, FPRL1, and FPRL2 clearly showed that FLIPr directly bound to FPRL1 and, at higher concentrations, also to FPR but not to C5aR and FPRL2. FLIPr can reveal unknown inflammatory ligands crucial during S. aureus infections. As a novel described FPRL1 antagonist, it might lead to the development of therapeutic agents in FPRL1-mediated inflammatory components of diseases such as systemic amyloidosis, Alzheimer's, and prion disease.
Online Inquiry
Verification code
Inquiry Basket