β-MSH (monkey)
Need Assistance?
  • US & Canada:
    +
  • UK: +

β-MSH (monkey)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-015820
CAS number
17750-75-3
Molecular Formula
C98H138N28O29S
Molecular Weight
2204.38
β-MSH (monkey)
IUPAC Name
(2S)-2-[[(2S)-6-amino-2-[[(2S)-1-[(2S)-1-[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[2-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-carboxybutanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]hexanoyl]amino]butanedioic acid
Synonyms
Beta-MSH (5-22); H-ASP-GLU-GLY-PRO-TYR-ARG-MET-GLU-HIS-PHE-ARG-TRP-GLY-SER-PRO-PRO-LYS-ASP-OH
Purity
95%
Sequence
DEGPYRMEHFRWGSPPKD
InChI
InChI=1S/C98H138N28O29S/c1-156-39-32-65(117-84(142)61(19-9-34-106-97(101)102)114-90(148)67(41-53-24-26-56(128)27-25-53)122-92(150)72-21-11-36-124(72)76(130)49-110-82(140)63(28-30-77(131)132)113-81(139)58(100)44-79(135)136)88(146)116-64(29-31-78(133)134)87(145)121-69(43-55-47-105-51-111-55)91(149)119-66(40-52-14-3-2-4-15-52)89(147)115-62(20-10-35-107-98(103)104)85(143)120-68(42-54-46-108-59-17-6-5-16-57(54)59)83(141)109-48-75(129)112-71(50-127)94(152)126-38-13-23-74(126)95(153)125-37-12-22-73(125)93(151)118-60(18-7-8-33-99)86(144)123-70(96(154)155)45-80(137)138/h2-6,14-17,24-27,46-47,51,58,60-74,108,127-128H,7-13,18-23,28-45,48-50,99-100H2,1H3,(H,105,111)(H,109,141)(H,110,140)(H,112,129)(H,113,139)(H,114,148)(H,115,147)(H,116,146)(H,117,142)(H,118,151)(H,119,149)(H,120,143)(H,121,145)(H,122,150)(H,123,144)(H,131,132)(H,133,134)(H,135,136)(H,137,138)(H,154,155)(H4,101,102,106)(H4,103,104,107)/t58-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-/m0/s1
InChI Key
BSACAYSFBJBFSO-RYLVUJHESA-N
Canonical SMILES
CSCCC(C(=O)NC(CCC(=O)O)C(=O)NC(CC1=CN=CN1)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC3=CNC4=CC=CC=C43)C(=O)NCC(=O)NC(CO)C(=O)N5CCCC5C(=O)N6CCCC6C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)O)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC7=CC=C(C=C7)O)NC(=O)C8CCCN8C(=O)CNC(=O)C(CCC(=O)O)NC(=O)C(CC(=O)O)N
1. Skin pigmentation and its control: From ultraviolet radiation to stem cells
Joseph Michael Yardman-Frank, David E Fisher Exp Dermatol. 2021 Apr;30(4):560-571. doi: 10.1111/exd.14260. Epub 2020 Dec 24.
In the light of substantial discoveries in epithelial and hair pigmentation pathophysiology, this review summarizes the current understanding of skin pigmentation mechanisms. Melanocytes are pigment-producing cells, and their key regulating transcription factor is the melanocyte-specific microphthalmia-associated transcription factor (m-MITF). Ultraviolet (UV) radiation is a unique modulator of skin pigmentation influencing tanning pathways. The delayed tanning pathway occurs as UVB produces keratinocyte DNA damage, causing p53-mediated expression of the pro-opiomelanocortin (POMC) gene that is processed to release α-melanocyte-stimulating hormone (α-MSH). α-MSH stimulates the melanocortin 1 receptor (MC1R) on melanocytes, leading to m-MITF expression and melanogenesis. POMC cleavage also releases β-endorphin, which creates a neuroendocrine pathway that promotes UV-seeking behaviours. Mutations along the tanning pathway can affect pigmentation and increase the risk of skin malignancies. MC1R variants have received considerable attention, yet the allele is highly polymorphic with varied phenotypes. Vitiligo presents with depigmented skin lesions due to autoimmune destruction of melanocytes. UVB phototherapy stimulates melanocyte stem cells in the hair bulge to undergo differentiation and upwards migration resulting in perifollicular repigmentation of vitiliginous lesions, which is under sophisticated signalling control. Melanocyte stem cells, normally quiescent, undergo cyclic activation/differentiation and downward migration with the hair cycle, providing pigment to hair follicles. Physiological hair greying results from progressive loss of melanocyte stem cells and can be accelerated by acute stress-induced, sympathetic driven hyperproliferation of the melanocyte stem cells. Ultimately, by reviewing the pathways governing epithelial and follicular pigmentation, numerous areas of future research and potential points of intervention are highlighted.
2. Evolution of proopiomelanocortin
Ana Rocha, Alejandra Godino-Gimeno, José Miguel Cerdá-Reverter Vitam Horm. 2019;111:1-16. doi: 10.1016/bs.vh.2019.05.008. Epub 2019 Jun 11.
Proopiomelanocortin (POMC) belongs to the opioid/orphanin gene family whose peptide precursors include either opioid (YGGF) or the orphanin/nociceptin core sequences (FGGF). In addition to POMC the family includes the proenkephalin (PENK), prodynorphin (PDYN), and nociceptin/proorphanin (PNOC) precursors. The opioid core sequence in POMC is incorporated by the β-endorphin that occupies the C-terminal region but this propeptide also exhibits at least two "alien" melanocortin core sequences (HFRW). An ACTH/MSH fragment merged into the opioid fragment not earlier than the two tetraploidizations of the vertebrate genome. Therefore, POMC exhibit a complex "evolutionary life" since the gene has coevolved together with two different receptor systems, i.e., opioid and melanocortin following a horse trading system. In this article, we summarize the different evolutionary hypotheses proposed for POMC evolution.
3. Obesity, POMC, and POMC-processing Enzymes: Surprising Results From Animal Models
Iris Lindberg, Lloyd D Fricker Endocrinology. 2021 Dec 1;162(12):bqab155. doi: 10.1210/endocr/bqab155.
Peptides derived from proopiomelanocortin (POMC) are well-established neuropeptides and peptide hormones that perform multiple functions, including regulation of body weight. In humans and some animals, these peptides include α- and β-melanocyte-stimulating hormone (MSH). In certain rodent species, no β-MSH is produced from POMC because of a change in the cleavage site. Enzymes that convert POMC into MSH include prohormone convertases (PCs), carboxypeptidases (CPs), and peptidyl-α-amidating monooxygenase (PAM). Humans and mice with inactivating mutations in either PC1/3 or carboxypeptidase E (CPE) are obese, which was assumed to result from defective processing of POMC into MSH. However, recent studies have shown that selective loss of either PC1/3 or CPE in POMC-expressing cells does not cause obesity. These findings suggest that defects in POMC processing cannot alone account for the obesity observed in global PC1/3 or CPE mutants. We propose that obesity in animals lacking PC1/3 or CPE activity depends, at least in part, on deficient processing of peptides in non-POMC-expressing cells either in the brain and/or the periphery. Genetic background may also contribute to the manifestation of obesity.
Online Inquiry
Verification code
Inquiry Basket