Nα-Boc-Nε-2-chloro-Z-L-lysine N-hydroxysuccinimide ester
Need Assistance?
  • US & Canada:
    +
  • UK: +

Nα-Boc-Nε-2-chloro-Z-L-lysine N-hydroxysuccinimide ester

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

The 2-Cl-Z protection is about 50 times more stable than the Z-group.

Category
BOC-Amino Acids
Catalog number
BAT-004293
CAS number
66438-39-9
Molecular Formula
C23H30ClN3O8
Molecular Weight
511.96
Nα-Boc-Nε-2-chloro-Z-L-lysine N-hydroxysuccinimide ester
IUPAC Name
(2,5-dioxopyrrolidin-1-yl) (2S)-6-[(2-chlorophenyl)methoxycarbonylamino]-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoate
Synonyms
Boc-L-Lys(2-Cl-Z)-Osu; (S)-2,5-Dioxopyrrolidin-1-yl 2-((tert-butoxycarbonyl)amino)-6-((((2-chlorobenzyl)oxy)carbonyl)amino)hexanoate
Appearance
White powder
Purity
≥ 99% (HPLC)
Melting Point
97-104 °C
Storage
Store at 2-8 °C
InChI
InChI=1S/C23H30ClN3O8/c1-23(2,3)34-22(32)26-17(20(30)35-27-18(28)11-12-19(27)29)10-6-7-13-25-21(31)33-14-15-8-4-5-9-16(15)24/h4-5,8-9,17H,6-7,10-14H2,1-3H3,(H,25,31)(H,26,32)/t17-/m0/s1
InChI Key
DLFRCISYWZDQHE-KRWDZBQOSA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(CCCCNC(=O)OCC1=CC=CC=C1Cl)C(=O)ON2C(=O)CCC2=O
1. Colorimetric Detection of the SARS-CoV-2 Virus (COVID-19) in Artificial Saliva Using Polydiacetylene Paper Strips
Christopher D Prainito, Gaddi Eshun, Francis J Osonga, Daniel Isika, Cynthia Centeno, Omowunmi A Sadik Biosensors (Basel). 2022 Sep 29;12(10):804. doi: 10.3390/bios12100804.
The spread and resurgence of the SARS-CoV-2 virus (COVID-19 disease) threatens human health and social relations. Prevention of COVID-19 disease partly relies on fabricating low-cost, point-of-care (POC) sensing technology that can rapidly and selectively detect the SARS-CoV-2 virus. We report a colorimetric, paper-based polydiacetylene (PDA) biosensor, designed to detect SARS-CoV-2 spike protein in artificial saliva. Analytical characterizations of the PDA sensor using NMR and FT-IR spectroscopy showed the correct structural elucidation of PCDA-NHS conjugation. The PDA sensor platform containing the N-Hydroxysuccinimide ester of 10, 12-pentacosadiynoic acid (PCDA-NHS) was divided into three experimental PCDA-NHS concentration groups of 10%, 20%, and 30% to optimize the performance of the sensor. The optimal PCDA-NHS molar concentration was determined to be 10%. The PDA sensor works by a color change from blue to red as its colorimetric output when the immobilized antibody binds to the SARS-CoV-2 spike protein in saliva samples. Our results showed that the PDA sensing platform was able to rapidly and qualitatively detect the SARS-CoV-2 spike protein within the concentration range of 1 to 100 ng/mL after four hours of incubation. Further investigation of pH and temperature showed minimal influence on the PDA sensor for the detection of COVID-19 disease. After exposure to the SARS-CoV-2 spike protein, smartphone images of the PDA sensor were used to assess the sensor output by using the red chromatic shift (RCS) of the signal response. These results indicate the potential and practical use of this PDA sensor design for the rapid, colorimetric detection of COVID-19 disease in developing countries with limited access to medical testing.
2. Amine coupling through EDC/NHS: a practical approach
Marcel J E Fischer Methods Mol Biol. 2010;627:55-73. doi: 10.1007/978-1-60761-670-2_3.
Surface plasmon resonance (SPR) is one of the leading tools in biomedical research. The challenge in its use is the controlled positioning of one of the components of an interaction on a carefully designed surface. Many attempts in interaction analysis fail due to the non-functional or unsuccessful immobilization of a reactant onto the complex matrix of that surface. The most common technique for linking ligands covalently to a hydrophilic solid surface is amine coupling via reactive esters. In this chapter detailed methods and problem discussions will be given to assist in fast decision analysis to optimize immobilization and regeneration. Topics in focus are different coupling techniques for small and large molecules, streptavidin-biotin sandwich immobilization, and optimizing regeneration conditions.
3. Selective protein N-terminal labeling with N-hydroxysuccinimide esters
Hanjie Jiang, Gabriel D D'Agostino, Philip A Cole, Daniel R Dempsey Methods Enzymol. 2020;639:333-353. doi: 10.1016/bs.mie.2020.04.018. Epub 2020 Apr 28.
In order to gain detailed insight into the biochemical behavior of proteins, researchers have developed chemical tools to incorporate new functionality into proteins beyond the canonical 20 amino acids. Important considerations regarding effective chemical modification of proteins include chemoselectivity, near stoichiometric labeling, and reaction conditions that maintain protein stability. Taking these factors into account, we discuss an N-terminal labeling strategy that employs a simple two-step "one-pot" method using N-hydroxysuccinimide (NHS) esters. The first step converts a R-NHS ester into a more chemoselective R-thioester. The second step reacts the in situ generated R-thioester with a protein that harbors an N-terminal cysteine to generate a new amide bond. This labeling reaction is selective for the N-terminus with high stoichiometry. Herein, we provide a detailed description of this method and further highlight its utility with a large protein (>100kDa) and labeling with a commonly used cyanine dye.
Online Inquiry
Verification code
Inquiry Basket