Nα-Boc-Nε-Fmoc-L-lysine methyl ester
Need Assistance?
  • US & Canada:
    +
  • UK: +

Nα-Boc-Nε-Fmoc-L-lysine methyl ester

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-004508
CAS number
133628-28-1
Molecular Formula
C27H34N2O6
Molecular Weight
482.58
Nα-Boc-Nε-Fmoc-L-lysine methyl ester
IUPAC Name
methyl (2S)-6-(9H-fluoren-9-ylmethoxycarbonylamino)-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoate
Synonyms
Boc-L-Lys(Fmoc)-OMe
Purity
≥ 98% (HPLC)
Density
1.169±0.06 g/cm3(Predicted)
Melting Point
101-108 °C
Boiling Point
653.7±55.0 °C(Predicted)
Storage
Store at 2-8°C
InChI
InChI=1S/C27H34N2O6/c1-27(2,3)35-26(32)29-23(24(30)33-4)15-9-10-16-28-25(31)34-17-22-20-13-7-5-11-18(20)19-12-6-8-14-21(19)22/h5-8,11-14,22-23H,9-10,15-17H2,1-4H3,(H,28,31)(H,29,32)/t23-/m0/s1
InChI Key
NUSZDVABASFMMF-QHCPKHFHSA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(CCCCNC(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13)C(=O)OC
1. Efficient Fmoc-Protected Amino Ester Hydrolysis Using Green Calcium(II) Iodide as a Protective Agent
Renaud Binette, Michael Desgagné, Camille Theaud, Pierre-Luc Boudreault Molecules. 2022 Apr 27;27(9):2788. doi: 10.3390/molecules27092788.
In order to modify amino acids, the C-terminus carboxylic acid usually needs to be protected, typically as a methyl ester. However, standard cleavage of methyl esters requires either highly basic or acidic conditions, which are not compatible with Fmoc or acid-labile protecting groups. This highlights the need for orthogonal conditions that permit selective deprotection of esters to create SPPS-ready amino acids. Herein, mild orthogonal ester hydrolysis conditions are systematically explored using calcium(II) iodide as a protective agent for the Fmoc protecting group and optimized for a broad scope of amino esters. Our optimized reaction improved on the already known trimethyltin hydroxide, as it produced better yields with greener, inexpensive chemicals and a less extensive energy expenditure.
2. O-Methylation of carboxylic acids with streptozotocin
Li-Yan Zeng, Yang Liu, Jiakun Han, Jinhong Chen, Shuwen Liu, Baomin Xi Org Biomol Chem. 2022 Jul 6;20(26):5230-5233. doi: 10.1039/d2ob00578f.
The clinically used DNA-alkylating drug streptozotocin (STZ) was investigated using a simple work-up as an O-methylating agent to transform various carboxylic acids, sulfonic acids and phosphorous acids into corresponding methyl esters, and did so with yields of up to 97% in 4 h at room temperature. Good substrate tolerance was observed, and benefited from the mild conditions and compatibility of the reaction with water.
3. Acridinium Ester Chemiluminescence: Methyl Substitution on the Acridine Moiety
Manabu Nakazono, Shinkoh Nanbu, Takeyuki Akita, Kenji Hamase J Oleo Sci. 2021;70(11):1677-1684. doi: 10.5650/jos.ess21186.
Methyl groups were introduced on the acridine moiety in chemiluminescent acridinium esters that have electron-withdrawing groups (trifluoromethyl, cyano, nitro, ethoxycarbonyl) at the 4-position on the phenyl ester. The introduction of methyl groups at the 2-, 2,7-, and 2,3,6,7-positions on the acridine moiety shifted the optimal pH that gave relatively strong chemiluminescence intensity from neutral conditions to alkaline conditions. 4-(Ethoxycarbonyl)phenyl 2,3,6,7,10-pentamethyl-10λ4-acridine-9-carboxylate, trifluoromethanesulfonate salt showed long-lasting chemiluminescence under alkaline conditions. Acridinium esters to determine hydrogen peroxide concentration at pH 7-10 were newly developed.
Online Inquiry
Verification code
Inquiry Basket