1. Common antiviral cytotoxic t-lymphocyte epitope for diverse arenaviruses
M B Oldstone, H Lewicki, D Homann, C Nguyen, S Julien, J E Gairin J Virol. 2001 Jul;75(14):6273-8. doi: 10.1128/JVI.75.14.6273-6278.2001.
Members of the Arenaviridae family have been isolated from mammalian hosts in disparate geographic locations, leading to their grouping as Old World types (i.e., lymphocytic choriomeningitis virus [LCMV], Lassa fever virus [LFV], Mopeia virus, and Mobala virus) and New World types (i.e., Junin, Machupo, Tacaribe, and Sabia viruses) (C. J. Peters, M. J. Buchmeier, P. E. Rollin, and T. G. Ksiazek, p. 1521-1551, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996; P. J. Southern, p. 1505-1519, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996). Several types in both groups-LFV, Junin, Machupo, and Sabia viruses-cause severe and often lethal human diseases. By sequence comparison, we noted that eight Old World and New World arenaviruses share several amino acids with the nucleoprotein (NP) that consists of amino acids (aa) 118 to 126 (NP 118-126) (RPQASGVYM) of LCMV that comprise the immunodominant cytotoxic T-lymphocyte (CTL) epitope for H-2(d) mice (32). This L(d)-restricted epitope constituted >97% of the total bulk CTLs produced in the specific antiviral or clonal responses of H-2(d) BALB mice. NP 118-126 of the Old World arenaviruses LFV, Mopeia virus, and LCMV and the New World arenavirus Sabia virus bound at high affinity to L(d). The primary H-2(d) CTL anti-LCMV response as well as that of a CTL clone responsive to LCMV NP 118-126 recognized target cells coated with NP 118-126 peptides derived from LCMV, LFV, and Mopeia virus but not Sabia virus, indicating that a common functional NP epitope exists among Old World arenaviruses. Use of site-specific amino acid exchanges in the NP CTL epitope among these arenaviruses identified amino acids involved in major histocompatibility complex binding and CTL recognition.
2. High mobility group box 1 inhibition by BoxA attenuates ovalbumin-induced allergic rhinitis in mice
Liyan Yue, Jinhui Dong, Jianxing Wang, Xiaoyan Yin, Xiumin Ren, Ou Xu, Chunguang Shan Autoimmunity. 2022 Mar;55(2):118-126. doi: 10.1080/08916934.2021.2021512. Epub 2022 Jan 10.
This study was designed to evaluate the effects of BoxA on allergic rhinitis (AR). Ovalbumin (OVA)-induced AR mice model was employed and BoxA was administered to AR mice. AR symptoms, levels of cytokines and chemokines, and the expression of high mobility group box 1 (HMGB1), TLR2, and TLR4 were measured. BoxA treatment significantly ameliorated AR symptoms, decreased level of histamine, OVA-specific antibodies, suppressed the infiltration of immune cells in nasal tissues, inhibited the expression of IL-4, IL-6, IL-5, TNF-α, IL-13, IL-17, IL-2 while promoting the expression of IL-10, suppressed the expression of HMGB1, TLR2, and TLR4 in AR mice. BoxA ameliorated allergic rhinitis in mice by inhibiting HMGB1.
3. Building centromeres: home sweet home or a nomadic existence?
Alessia Buscaino, Robin Allshire, Alison Pidoux Curr Opin Genet Dev. 2010 Apr;20(2):118-26. doi: 10.1016/j.gde.2010.01.006. Epub 2010 Mar 4.
Centromere assembly and propagation is governed by genetic and epigenetic mechanisms. A centromere-specific histone H3 variant, CENP-A is strongly favored as the epigenetic mark that specifies centromere identity. Despite the critical importance of centromere function, centromeric sequences are not conserved. This has prompted exploration of other genomic and chromatin features to gain an understanding of where CENP-A is deposited. In this review we highlight recent papers that advance our understanding of how the cell builds a centromere. We focus on what influences the choice of site for CENP-A deposition and therefore the site of centromere formation. We then briefly discuss how centromeres are propagated once the site of centromere assembly is chosen.