Orexin A (16-33)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Orexin A (16-33)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Orexin A (16-33) lacks the disulfide bridge of orexin A, but retains part of the full-length OXA/OXB activity. It has been used in place of intact neuropeptides.

Category
Peptide Inhibitors
Catalog number
BAT-014775
CAS number
1374694-00-4
Molecular Formula
C85H136N24O23
Molecular Weight
1862.16
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[2-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S,3S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-oxopentanoic acid
Synonyms
Hypocretin-1 (16-33) (Human, Mouse Rat); H-Leu-Tyr-Glu-Leu-Leu-His-Gly-Ala-Gly-Asn-His-Ala-Ala-Gly-Ile-Leu-Thr-Leu-NH2; L-leucyl-L-tyrosyl-L-alpha-glutamyl-L-leucyl-L-leucyl-L-histidyl-glycyl-L-alanyl-glycyl-L-asparagyl-L-histidyl-L-alanyl-L-alanyl-glycyl-L-isoleucyl-L-leucyl-L-threonyl-L-leucinamide; OXA 16-33
Appearance
White Powder
Purity
≥95%
Sequence
LYELLHGAGNHAAGILTL-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO, Water
InChI
InChI=1S/C85H136N24O23/c1-17-45(12)69(84(131)107-59(28-44(10)11)83(130)109-70(49(16)110)85(132)101-56(71(88)118)25-41(4)5)108-67(115)37-92-73(120)47(14)97-74(121)48(15)98-78(125)62(31-52-34-90-39-95-52)106-82(129)63(32-64(87)112)99-66(114)36-91-72(119)46(13)96-65(113)35-93-76(123)61(30-51-33-89-38-94-51)105-80(127)58(27-43(8)9)104-79(126)57(26-42(6)7)103-77(124)55(22-23-68(116)117)100-81(128)60(29-50-18-20-53(111)21-19-50)102-75(122)54(86)24-40(2)3/h18-21,33-34,38-49,54-63,69-70,110-111H,17,22-32,35-37,86H2,1-16H3,(H2,87,112)(H2,88,118)(H,89,94)(H,90,95)(H,91,119)(H,92,120)(H,93,123)(H,96,113)(H,97,121)(H,98,125)(H,99,114)(H,100,128)(H,101,132)(H,102,122)(H,103,124)(H,104,126)(H,105,127)(H,106,129)(H,107,131)(H,108,115)(H,109,130)(H,116,117)/t45-,46-,47-,48-,49+,54-,55-,56-,57-,58-,59-,60-,61-,62-,63-,69-,70-/m0/s1
InChI Key
OJUWPKGAOUIXEV-ZEKCHBSBSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)N)NC(=O)CNC(=O)C(C)NC(=O)C(C)NC(=O)C(CC1=CN=CN1)NC(=O)C(CC(=O)N)NC(=O)CNC(=O)C(C)NC(=O)CNC(=O)C(CC2=CN=CN2)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCC(=O)O)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)C(CC(C)C)N
1. Intramolecular fluorescence resonance energy transfer (FRET) sensors of the orexin OX1 and OX2 receptors identify slow kinetics of agonist activation
Tian-Rui Xu, Richard J Ward, John D Pediani, Graeme Milligan J Biol Chem. 2012 Apr 27;287(18):14937-49. doi: 10.1074/jbc.M111.334300. Epub 2012 Mar 2.
Intramolecular fluorescence resonance energy transfer (FRET) sensors able to detect changes in distance or orientation between the 3rd intracellular loop and C-terminal tail of the human orexin OX(1) and OX(2) G protein-coupled receptors following binding of agonist ligands were produced and expressed stably. These were directed to the plasma membrane and, despite the substantial sequence alterations introduced, in each case were able to elevate [Ca(2+)](i), promote phosphorylation of the ERK1/2 MAP kinases and become internalized effectively upon addition of the native orexin peptides. Detailed characterization of the OX(1) sensor demonstrated that it was activated with rank order of potency orexin A > orexin B > orexin A 16-33, that it bound antagonist ligands with affinity similar to the wild-type receptor, and that mutation of a single residue, D203A, greatly reduced the binding and function of orexin A but not antagonist ligands. Addition of orexin A to individual cells expressing an OX(1) sensor resulted in a time- and concentration-dependent reduction in FRET signal consistent with mass-action and potency/affinity estimates for the peptide. Compared with the response kinetics of a muscarinic M(3) acetylcholine receptor sensor upon addition of agonist, response of the OX(1) and OX(2) sensors to orexin A was slow, consistent with a multistep binding and activation process. Such sensors provide means to assess the kinetics of receptor activation and how this may be altered by mutation and sequence variation of the receptors.
2. Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum
Kristi A Kohlmeier, Takafumi Inoue, Christopher S Leonard J Neurophysiol. 2004 Jul;92(1):221-35. doi: 10.1152/jn.00076.2004. Epub 2004 Mar 3.
Dysfunction of the hypocretin/orexin (Hcrt/Orx) peptide system is closely linked to the sleep disorder narcolepsy, suggesting that it is also central to the normal regulation of sleep and wakefulness. Indeed, Hcrt/Orx peptides produce long-lasting excitation of arousal-related neurons, including those in the laterodorsal tegmentum (LDT) and the dorsal raphe (DR), although the mechanisms underlying these actions are not understood. Since Hcrt/Orx mobilizes intracellular calcium ([Ca(2+)](i)) in cells transfected with orexin receptors and since receptor-mediated Ca(2+) transients are ubiquitous signaling mechanisms, we investigated whether Hcrt/Orx regulates [Ca(2+)](i) in the LDT and DR. Changes in [Ca(2+)](i) were monitored by fluorescence changes of fura-2 AM loaded cells in young mouse brain slices. We found Hcrt/Orx (Orexin-A, 30-1,000 nM) evoked long-lasting increases in [Ca(2+)](i) with differing temporal profiles ranging from spiking to smooth plateaus. A fragment of Hcrt/Orx (16-33) failed to evoke changes in [Ca(2+)](i) and changes were not blocked by TTX or ionotropic glutamate receptor antagonists, suggesting they resulted from specific activation of postsynaptic orexin receptors. Unlike orexin receptor-transfected cells, Hcrt/Orx-responses were not attenuated by depletion of Ca(2+) stores with cyclopiazonic acid (CPA; 3-30 microM), thapsigargin (3 microM), or ryanodine (20 microM), although store-depletion by either CPA or ryanodine blocked Ca(2+) mobilization by the metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD; 30 microM). In contrast, Hcrt/Orx responses were strongly attenuated by lowering extracellular Ca(2+) ( approximately 20 microM) but were not inhibited by concentrations of KB-R7943 (10 microM) selective for blockade of sodium/calcium exchange. Nifedipine (10 microM), inhibited Hcrt/Orx responses but was more effective at abolishing spiking than plateau responses. Bay K 8644 (5-10 microM), an L-type calcium channel agonist, potentiated responses. Finally, responses were attenuated by inhibitors of protein kinase C (PKC) but not by inhibitors of adenylyl cyclase. Collectively, our findings indicate that Hcrt/Orx signaling in the reticular activating system involves elevation of [Ca(2+)](i) by a PKC-involved influx of Ca(2+) across the plasma membrane, in part, via L-type calcium channels. Thus the physiological release of Hcrt/Orx may help regulate Ca(2+)-dependent processes such as gene expression and NO production in the LDT and DR in relation with behavioral state. Accordingly, the loss of Hcrt/Orx signaling in narcolepsy would be expected to disrupt calcium-dependent processes in these and other target structures.
Online Inquiry
Verification code
Inquiry Basket