pep2-SVKE
Need Assistance?
  • US & Canada:
    +
  • UK: +

pep2-SVKE

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

pep2-SVKI is an inhibitor peptide.

Category
Peptide Inhibitors
Catalog number
BAT-009134
CAS number
1315378-76-7
Molecular Formula
C59H89N13O20
Molecular Weight
1300.43
Synonyms
(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-3-methylpentanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]pentanedioic acid
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.3±0.1 g/cm3
Boiling Point
1729.6±65.0°C at 760 mmHg
Sequence
YNVYGIESVKE
Storage
Store at -20°C
InChI
InChI=1S/C59H89N13O20/c1-7-31(6)49(58(90)65-38(19-21-45(78)79)53(85)69-42(28-73)55(87)72-47(29(2)3)56(88)64-37(10-8-9-23-60)52(84)66-39(59(91)92)20-22-46(80)81)70-44(77)27-63-51(83)40(25-33-13-17-35(75)18-14-33)68-57(89)48(30(4)5)71-54(86)41(26-43(62)76)67-50(82)36(61)24-32-11-15-34(74)16-12-32/h11-18,29-31,36-42,47-49,73-75H,7-10,19-28,60-61H2,1-6H3,(H2,62,76)(H,63,83)(H,64,88)(H,65,90)(H,66,84)(H,67,82)(H,68,89)(H,69,85)(H,70,77)(H,71,86)(H,72,87)(H,78,79)(H,80,81)(H,91,92)/t31-,36-,37-,38-,39-,40-,41-,42-,47-,48-,49-/m0/s1
InChI Key
AHURAWWDQDDHNP-OIKDQGPWSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)O)C(=O)O)NC(=O)CNC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CC2=CC=C(C=C2)O)N
1. Nicotinic receptors modulate the function of presynaptic AMPA receptors on glutamatergic nerve terminals in the trigeminal caudal nucleus
Irene A Samengo, Diego Currò, Maria Martire Neurochem Int. 2015 Nov;90:166-72. doi: 10.1016/j.neuint.2015.08.008. Epub 2015 Aug 12.
In this study, we demonstrate the existence on trigeminal caudal nucleus (TCN) glutamatergic terminals of α4β2 nicotinic receptors (nAChRs) capable of enhancing the terminals' spontaneous release of [(3)H]d-aspartate ([(3)H]D-Asp). In rat TCN synaptosomes, spontaneous [(3)H]D-Asp release was increased by nicotine and the nicotinic receptor agonists (±)epibatidine and RJR2403. The increase was potentiated by the positive allosteric modulator of nAChRs LY2087101, inhibited by the nicotinic antagonists mecamylamine (MEC) and dihydro-β-erythroidine hydrobromide (DHβE), and unaffected by α-bungarotoxin (α-BgTx) and methyllycaconitine (MLA). Evidence of functional interaction was observed between the α4β2 nAChRs and cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors co-localized on the TCN synaptosomes. Brief pre-exposure of synaptosomes to 30 μM nicotine or 10 μM RJR2403 abolished the AMPA (100 μM) -induced potentiation of [K(+)]e-evoked [(3)H]D-Asp release, an effect that seems to be caused by nicotine-induced increases in the internalization of AMPA receptors. Indeed, the effects of nicotine-pretreatment were not seen in synaptosomes containing pre-entrapped pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA endocytosis, while entrapment of pep2-SVKE, an inactive peptide used as negative control, was inefficacious. These findings show that nicotine can negatively modulate the function of AMPA receptors present on glutamatergic nerve terminals in the rat TCN. Dynamic control of AMPA receptors by the nicotinic cholinergic system has been observed under other experimental conditions, and it can contribute to the control of synaptic plasticity such as long-term depression and potentiation. Nicotine's ability to reduce the functionality of presynaptic AMPA receptors could contribute to its analgesic effects by diminishing glutamatergic transmission from the primary afferent terminals that convey nociceptive input to TCN.
2. In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals
Massimo Grilli, et al. Neuropharmacology. 2012 Oct;63(5):916-26. doi: 10.1016/j.neuropharm.2012.06.049. Epub 2012 Jul 5.
Here we provide functional and immunocytochemical evidence supporting the presence on Nucleus Accumbens (NAc) dopaminergic terminals of cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors, which activation causes Ca²⁺-dependent [³H]dopamine ([³H]DA) exocytosis. These AMPA receptors cross-talk with co-localized nicotinic receptors (nAChRs), as suggested by the finding that in vitro short-term pre-exposure of synaptosomes to 30 μM nicotine caused a significant reduction of both the 30 μM nicotine and the 100 μM AMPA-evoked [³H]DA overflow. Entrapping pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA receptor endocytosis, in NAC synaptosomes prevented the nicotine-induced reduction of AMPA-mediated [³H]DA exocytosis, while pep2-SVKE, used as negative control, was inefficacious. Immunocytochemical studies showed that a significant percentage of NAc terminals were dopaminergic and that most of these terminals also posses GluA2 receptor subunits. Western blot analysis of GluA2 immunoreactivity showed that presynaptic GluA2 proteins in NAc terminals were reduced in nicotine-pretreated synaptosomes when compared to the control. The nACh-AMPA receptor-receptor interaction was not limited to dopaminergic terminals since nicotine pre-exposure also affected the presynaptic AMPA receptors controlling hippocampal noradrenaline release, but not the presynaptic AMPA receptors controlling GABA and acetylcholine release. These observations could be relevant to the comprehension of the molecular mechanisms at the basis of nicotine rewarding.
3. Antibodies Against the NH2-Terminus of the GluA Subunits Affect the AMPA-Evoked Releasing Activity: The Role of Complement
Francesca Cisani, Guendalina Olivero, Cesare Usai, Gilles Van Camp, Stefania Maccari, Sara Morley-Fletcher, Anna Maria Pittaluga Front Immunol. 2021 Feb 26;12:586521. doi: 10.3389/fimmu.2021.586521. eCollection 2021.
Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.
Online Inquiry
Verification code
Inquiry Basket