Need Assistance?
  • US & Canada:
    +
  • UK: +

PhD2

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

PhD2 is an antimicrobial peptide found in petals, Petunia hybrida, and has antifungal activity.

Category
Functional Peptides
Catalog number
BAT-011578
Molecular Formula
C227H375N67O65S10
Molecular Weight
5403.48
IUPAC Name
N-[1-[5-(hydroxycarbamoyl)pyrimidin-2-yl]piperidin-4-yl]-6-oxo-2-pyrazol-1-yl-1H-pyrimidine-5-carboxamide
Synonyms
Floral defensin-like protein 2
Purity
>98%
Sequence
GTCKAECPTWEGICINKAPCVKCCKAQPEKFTDGHCSKILRRCLCTKPC
InChI
InChI=1S/C18H19N9O4/c28-14(25-31)11-8-19-17(20-9-11)26-6-2-12(3-7-26)23-15(29)13-10-21-18(24-16(13)30)27-5-1-4-22-27/h1,4-5,8-10,12,31H,2-3,6-7H2,(H,23,29)(H,25,28)(H,21,24,30)
InChI Key
WXBFFCPFJFYHFX-UHFFFAOYSA-N
Canonical SMILES
C1CN(CCC1NC(=O)C2=CN=C(NC2=O)N3C=CC=N3)C4=NC=C(C=N4)C(=O)NO
1. PHD2 in tumour angiogenesis
D A Chan, A J Giaccia Br J Cancer. 2010 Jun 29;103(1):1-5. doi: 10.1038/sj.bjc.6605682. Epub 2010 May 11.
Originally identified as the enzymes responsible for catalysing the oxidation of specific, conserved proline residues within hypoxia-inducible factor-1alpha (HIF-1alpha), the additional roles for the prolyl hydroxylase domain (PHD) proteins have remained elusive. Of the four identified PHD enzymes, PHD2 is considered to be the key oxygen sensor, as knockdown of PHD2 results in elevated HIF protein. Several recent studies have highlighted the importance of PHD2 in tumourigenesis. However, there is conflicting evidence as to the exact role of PHD2 in tumour angiogenesis. The divergence seems to be because of the contribution of stromal-derived PHD2, and in particular the involvement of endothelial cells, vs tumour-derived PHD2. This review summarises our current understanding of PHD2 and tumour angiogenesis, focusing on the influences of PHD2 on vascular normalisation and neovascularisation.
2. Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2
Tianshi Feng, et al. Nat Commun. 2022 Sep 5;13(1):5208. doi: 10.1038/s41467-022-32871-3.
Adipose tissue macrophage (ATM) inflammation is involved with meta-inflammation and pathology of metabolic complications. Here we report that in adipocytes, elevated lactate production, previously regarded as the waste product of glycolysis, serves as a danger signal to promote ATM polarization to an inflammatory state in the context of obesity. Adipocyte-selective deletion of lactate dehydrogenase A (Ldha), the enzyme converting pyruvate to lactate, protects mice from obesity-associated glucose intolerance and insulin resistance, accompanied by a lower percentage of inflammatory ATM and reduced production of pro-inflammatory cytokines such as interleukin 1β (IL-1β). Mechanistically, lactate, at its physiological concentration, fosters the activation of inflammatory macrophages by directly binding to the catalytic domain of prolyl hydroxylase domain-containing 2 (PHD2) in a competitive manner with α-ketoglutarate and stabilizes hypoxia inducible factor (HIF-1α). Lactate-induced IL-1β was abolished in PHD2-deficient macrophages. Human adipose lactate level is positively linked with local inflammatory features and insulin resistance index independent of the body mass index (BMI). Our study shows a critical function of adipocyte-derived lactate in promoting the pro-inflammatory microenvironment in adipose and identifies PHD2 as a direct sensor of lactate, which functions to connect chronic inflammation and energy metabolism.
3. PHD2 deletion in endothelial or arterial smooth muscle cells reveals vascular cell type-specific responses in pulmonary hypertension and fibrosis
Harri Elamaa, et al. Angiogenesis. 2022 May;25(2):259-274. doi: 10.1007/s10456-021-09828-z. Epub 2022 Jan 8.
Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.
Online Inquiry
Verification code
Inquiry Basket