PKC (19-36)
Need Assistance?
  • US & Canada:
    +
  • UK: +

PKC (19-36)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

PKC (19-36) is a pseudosubstrate peptide inhibitor of protein kinase C (IC50 = 0.18 μM).

Category
Peptide Inhibitors
Catalog number
BAT-010244
CAS number
113731-96-7
Molecular Formula
C93H159N35O24
Molecular Weight
2151.48
PKC (19-36)
IUPAC Name
(4S)-4-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-5-carbamimidamidopentanoyl]amino]-3-phenylpropanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]acetyl]amino]propanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]hexanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-[[(2S)-1-[[(2S)-6-amino-1-[[(1S)-3-amino-1-carboxy-3-oxopropyl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-oxopentanoic acid
Synonyms
Gly-Arg-Pro-Arg-Thr-Ser-Ser-Phe-Ala-Glu-Gly
Appearance
White Powder
Purity
>97%
Density
1.48±0.1 g/cm3(Predicted)
Sequence
RFARKGALRQKNVHEVKN
Storage
Store at -20°C
Solubility
Soluble in water
InChI
InChI=1S/C93H159N35O24/c1-47(2)39-62(122-74(135)50(7)113-70(132)45-111-77(138)55(24-12-15-33-94)116-78(139)58(27-19-37-109-92(103)104)115-75(136)51(8)114-84(145)63(40-52-21-10-9-11-22-52)123-76(137)54(97)23-18-36-108-91(101)102)85(146)118-59(28-20-38-110-93(105)106)79(140)119-60(29-31-67(98)129)82(143)117-56(25-13-16-34-95)80(141)124-65(42-68(99)130)87(148)128-73(49(5)6)89(150)125-64(41-53-44-107-46-112-53)86(147)120-61(30-32-71(133)134)83(144)127-72(48(3)4)88(149)121-57(26-14-17-35-96)81(142)126-66(90(151)152)43-69(100)131/h9-11,21-22,44,46-51,54-66,72-73H,12-20,23-43,45,94-97H2,1-8H3,(H2,98,129)(H2,99,130)(H2,100,131)(H,107,112)(H,111,138)(H,113,132)(H,114,145)(H,115,136)(H,116,139)(H,117,143)(H,118,146)(H,119,140)(H,120,147)(H,121,149)(H,122,135)(H,123,137)(H,124,141)(H,125,150)(H,126,142)(H,127,144)(H,128,148)(H,133,134)(H,151,152)(H4,101,102,108)(H4,103,104,109)(H4,105,106,110)/t50-,51-,54-,55-,56-,57-,58-,59-,60-,61-,62-,63-,64-,65-,66-,72-,73-/m0/s1
InChI Key
NHCJMYZDRROLEW-OFXZVSIYSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(C(C)C)C(=O)NC(CC1=CNC=N1)C(=O)NC(CCC(=O)O)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)O)NC(=O)C(C)NC(=O)CNC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)C(C)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CCCNC(=N)N)N
1.Involvement of protein kinase C and protein kinase A in the enhancement of L-type calcium current by GABAB receptor activation in neonatal hippocampus.
Bray JG1, Mynlieff M. Neuroscience. 2011 Apr 14;179:62-72. doi: 10.1016/j.neuroscience.2011.01.054. Epub 2011 Jan 28.
In the early neonatal period activation of GABAB receptors attenuates calcium current through N-type calcium channels while enhancing current through L-type calcium channels in rat hippocampal neurons. The attenuation of N-type calcium current has been previously demonstrated to occur through direct interactions of the βγ subunits of Gi/o G-proteins, but the signal transduction pathway for the enhancement of L-type calcium channels in mammalian neurons remains unknown. In the present study, calcium currents were elicited in acute cultures from postnatal day 6-8 rat hippocampi in the presence of various modulators of protein kinase A (PKA) and protein kinase C (PKC) pathways. Overnight treatment with an inhibitor of Gi/o (pertussis toxin, 200 ng/ml) abolished the attenuation of calcium current by the GABAB agonist, baclofen (10 μM) with no effect on the enhancement of calcium current. These data indicate that while the attenuation of N-type calcium current is mediated by the Gi/o subtype of G-protein, the enhancement of L-type calcium current requires activation of a different G-protein.
2.Increase of Fas-induced apoptosis by inhibition of extracellular phosphorylation of Fas receptor in Jurkat cell line.
Lautrette C1, Loum-Ribot E, Petit D, Vermot-Desroches C, Wijdenes J, Jauberteau MO. Apoptosis. 2006 Jul;11(7):1195-204.
Apoptosis signalling through the Fas pathway requires several steps of aggregation of the Fas receptor in the membrane, including aggregation that may occur in the absence of Fas ligand. Association of Fas domains is determinant to signal transmission following Fas ligand binding to a specific domain. The domains involved in Fas aggregation are located in its extracellular region and contain three potential protein kinase C-binding motifs. We therefore studied the possibility that phosphorylation of the extracellular region of Fas might be implicated in the regulation of Fas-mediated apoptosis. Inhibition experiments of extracellular phosphorylation were performed in human Jurkat T leukemia cells with K252b, an impermeant protein-kinase inhibitor. Extracellular phosphorylation of Fas receptor was related to ecto-kinase, as assessed by the [gamma-(32)P] ATP labelling of Fas-116 kDa aggregates, suppressed by K252b inhibitor which significantly increased the sensitivity to Fas-mediated apoptosis.
3.Bidirectional regulation of dopamine D2 and neurotensin NTS1 receptors in dopamine neurons.
Jomphe C1, Lemelin PL, Okano H, Kobayashi K, Trudeau LE. Eur J Neurosci. 2006 Nov;24(10):2789-800. Epub 2006 Nov 20.
Several lines of evidence suggest a close association between dopamine (DA) and neurotensin (NT) systems in the CNS. Indeed, in the rodent brain, abundant NT-containing fibres are found in DA-rich areas such as the ventral tegmental area and substantia nigra. Moreover, it has been shown in vivo that NT, acting through its high-affinity receptor (NTS1), reduces the physiological and behavioural effects of DA D2 receptor (D2R) activation, a critical autoreceptor feedback system regulating DA neurotransmission. However, the mechanism of this interaction is still elusive. The aim of our study was thus to reproduce in vitro the interaction between D2R and NTS1, and then to characterize the mechanisms implicated. We used a primary culture model of DA neurons prepared from transgenic mice expressing green fluorescent protein under the control of the tyrosine hydroxylase promoter. In these cultures, DA neurons endogenously express both D2R and NTS1.
4.Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.
Sun L1, June Liu S. J Physiol. 2007 Sep 1;583(Pt 2):537-53. Epub 2007 Jun 21.
The repetitive activation of synaptic glutamate receptors can induce a lasting change in the number or subunit composition of synaptic AMPA receptors (AMPARs). However, NMDA receptors that are present extrasynaptically can also be activated by a burst of presynaptic activity, and thus may be involved in the induction of synaptic plasticity. Here we show that the physiological-like activation of extrasynaptic NMDARs induces a lasting change in the synaptic current, by changing the subunit composition of AMPARs at the parallel fibre-to-cerebellar stellate cell synapse. This extrasynaptic NMDAR-induced switch in synaptic AMPARs from GluR2-lacking (Ca(2+)-permeable) to GluR2-containing (Ca(2+)-impermeable) receptors requires the activation of protein kinase C (PKC). These results indicate that the activation of extrasynaptic NMDARs by glutamate spillover is an important mechanism that detects the pattern of afferent activity and subsequently exerts a remote regulation of AMPAR subtypes at the synapse via a PKC-dependent pathway.
Online Inquiry
Verification code
Inquiry Basket