PKI (5-24)
Need Assistance?
  • US & Canada:
    +
  • UK: +

PKI (5-24)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

PKI (5-24) is a competitive, non-reversible peptide inhibitor of PKA (cAMP-dependent protein kinase) (Ki = 2.3 nM). Its sequence is derived from the heat-stable skeletal muscle inhibitor protein of PKA. The PKA Inhibitor peptide binds to the catalytic subunit of PKA and displaces the regulatory subunit, and mimics protein substrate by binding to the catalytic site via the Arg-cluster basic residues.

Category
Peptide Inhibitors
Catalog number
BAT-010721
CAS number
99534-03-9
Molecular Formula
C94H148N32O31
Molecular Weight
2222.4
PKI (5-24)
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S,3R)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]-3-hydroxybutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-methylpentanoyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-oxobutanoyl]amino]propanoyl]amino]-3-methylpentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]butanedioic acid
Synonyms
L-threonyl-L-threonyl-L-tyrosyl-L-alanyl-L-a-aspartyl-L-phenylalanyl-L-isoleucyl-L-alanyl-L-serylglycyl-L-arginyl-L-threonylglycyl-larginyl-L-aspartic acid; PKI (5-24); Protein Kinase A Inhibitor (5-24)
Sequence
TTYADFIASGRTGRRNAIHD
Storage
Store in a cool and dry place (or refer to the Certificate of Analysis).
InChI
InChI=1S/C94H148N32O31/c1-11-42(3)70(124-85(150)58(31-50-19-14-13-15-20-50)117-84(149)61(35-67(135)136)116-74(139)44(5)110-81(146)57(32-51-24-26-53(131)27-25-51)119-90(155)73(49(10)130)126-86(151)69(96)47(8)128)88(153)112-45(6)75(140)122-63(40-127)77(142)107-38-65(133)114-55(22-17-29-105-93(99)100)80(145)125-72(48(9)129)87(152)108-39-66(134)113-54(21-16-28-104-92(97)98)78(143)115-56(23-18-30-106-94(101)102)79(144)118-60(34-64(95)132)82(147)111-46(7)76(141)123-71(43(4)12-2)89(154)120-59(33-52-37-103-41-109-52)83(148)121-62(91(156)157)36-68(137)138/h13-15,19-20,24-27,37,41-49,54-63,69-73,127-131H,11-12,16-18,21-23,28-36,38-40,96H2,1-10H3,(H2,95,132)(H,103,109)(H,107,142)(H,108,152)(H,110,146)(H,111,147)(H,112,153)(H,113,134)(H,114,133)(H,115,143)(H,116,139)(H,117,149)(H,118,144)(H,119,155)(H,120,154)(H,121,148)(H,122,140)(H,123,141)(H,124,150)(H,125,145)(H,126,151)(H,135,136)(H,137,138)(H,156,157)(H4,97,98,104)(H4,99,100,105)(H4,101,102,106)/t42-,43-,44-,45-,46-,47+,48+,49+,54-,55-,56-,57-,58-,59-,60-,61-,62-,63-,69-,70-,71-,72-,73-/m0/s1
InChI Key
AXOXZJJMUVSZQY-OCDBTFLZSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC1=CNC=N1)C(=O)NC(CC(=O)O)C(=O)O)NC(=O)C(C)NC(=O)C(CC(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)CNC(=O)C(C(C)O)NC(=O)C(CCCNC(=N)N)NC(=O)CNC(=O)C(CO)NC(=O)C(C)NC(=O)C(C(C)CC)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)C(C(C)O)NC(=O)C(C(C)O)N
1. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine
N Xuong, S Cox, S S Taylor, N Narayana, S Shaltiel Biochemistry . 1997 Apr 15;36(15):4438-48. doi: 10.1021/bi961947+.
The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other conserved loops that converge at the active site cleft. The catalytic loop (residues 166-171) and the Mg2+ positioning loop (residues 184-186) are a stable part of the large lobe and have low B-factors in all structures solved to date. The stability of the glycine-rich loop is highly dependent on the ligands that occupy the active site cleft with maximum stability achieved in the ternary complex containing Mg x ATP and the peptide inhibitor. In this ternary complex the gamma-phosphate is secured between both lobes by hydrogen bonds to the backbone amide of Ser 53 in the glycine-rich loop and the amino group of Lys 168 in the catalytic loop. In the adenosine ternary complex the water molecule replacing the gamma-phosphate hydrogen bonds between Lys 168 and Asp 166 and makes no contact with the small lobe. This glycine-rich loop is thus the most mobile component of the active site cleft, with the tip of the loop being highly sensitive to what occupies the gamma-subsite.
2. Kinase conformations: a computational study of the effect of ligand binding
V Helms, J A McCammon Protein Sci . 1997 Nov;6(11):2336-43. doi: 10.1002/pro.5560061106.
Protein function is often controlled by ligand-induced conformational transitions. Yet, in spite of the increasing number of three-dimensional crystal structures of proteins in different conformations, not much is known about the driving forces of these transitions. As an initial step toward exploring the conformational and energetic landscape of protein kinases by computational methods, intramolecular energies and hydration free energies were calculated for different conformations of the catalytic domain of cAMP-dependent protein kinase (cAPK) with a continuum (Poisson) model for the electrostatics. Three protein kinase crystal structures for ternary complexes of cAPK with the peptide inhibitor PKI(5-24) and ATP or AMP-PNP were modeled into idealized intermediate and open conformations. Concordant with experimental observation, we find that the binding of PKI(5-24) is more effective in stabilizing the closed and intermediate forms of cAPK than ATP. PKI(5-24) seems to drive the final closure of the active site cleft from intermediate to closed state because ATP does not distinguish between these two states. Binding of PKI(5-24) and ATP is energetically additive.
3. Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit
Andrei Izvolski, Jaak Järv, Aleksei Kuznetsov Comput Biol Chem . 2013 Dec;47:66-70. doi: 10.1016/j.compbiolchem.2013.06.004.
The structural dynamics of the cAMP-dependent protein kinase catalytic subunit were modeled using molecular dynamics computational methods. It was shown that the structure of this protein as well as its complexes with ATP and peptide ligand PKI(5-24) consisted of a large number of rapidly inter-converting conformations which could be grouped into subsets proceeding from their similarity. This cluster analysis revealed that conformations which correspond to the "opened" and "closed" structures of the protein were already present in the free enzyme, and most surprisingly co-existed in enzyme-ATP and enzyme-PKI(5-24) complexes as well as in the ternary complex, which included both of these ligands. The results also demonstrated that the most mobile structure segments of the protein were located in the regions of substrate binding sites and that their dynamics were most significantly affected by the binding of the ATP and peptide ligand.
Online Inquiry
Verification code
Inquiry Basket