1. Cholecystokinin levels in prohormone convertase 2 knock-out mouse brain regions reveal a complex phenotype of region-specific alterations
Margery C Beinfeld, Alissa Blum, Daesety Vishnuvardhan, Sanya Fanous, James E Marchand J Biol Chem. 2005 Nov 18;280(46):38410-5. doi: 10.1074/jbc.M500055200. Epub 2005 Sep 20.
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.
2. Hippocampal changes in mice lacking an active prohormone convertase 2
Su-Youne Chang, Christopher DeVera, Zhihua Yang, Tao Yang, Lina Song, Arthur McDowell, Zhi-Gang Xiong, Roger Simon, An Zhou Hippocampus. 2020 Jul;30(7):715-723. doi: 10.1002/hipo.23195. Epub 2020 Feb 14.
Prohormone convertase 2 (PC2) is essential for the biosynthesis of many neuropeptides, including several of them in hippocampus. In mouse brain, lacking an enzymatically active PC2 (PC2-null) causes accumulation of many neuropeptides in their precursor or intermediate forms. Little is known about how a PC2-null state may affect the function of the hippocampus. In this study, adult PC2-null mice and their wildtype (WT) littermates were subjected to three analyses to determine possible changes associated with PC2-null at physiological, behavioral, and molecular levels, respectively, under normal and stressed conditions. Electrophysiological recordings of hippocampal slices were performed to measure evoked field-excitatory postsynaptic potentials (EPSP), long-term potentiation (LTP), and paired-pulse facilitation (PPF). Morris water maze (MWM) testing was conducted to examine behavioral changes that are indicative of hippocampal integrity. Quantitative mass spectrometry analysis was used to determine changes in the hippocampal proteome in response to a focal cerebral ischemic insult. We found that there were no significant differences in the threshold of evoked EPSPs between PC2-null and WT animals. However, an increase in LTP in both triggering rate and amplitude was observed in PC2-null mice, suggesting that PC2 may be involved in regulating synaptic strength. The PPF, on the other hand, showed a decrease in PC2-null mice, suggesting a presynaptic mechanism. Consistent with changes in LTP, PC2-null mice displayed decreased latencies in finding the escape platform in the MWM test. Further, after distal focal cerebral ischemia, the hippocampal proteomes incurred changes in both WT and PC2-null mice, with a prominent change in proteins associated with neurotransmission, exocytosis, and transport processes seen in the PC2-null but not WT mice. Taken together, our results suggest that PC2 is involved in regulating hippocampal synaptic plasticity, learning, and memory behaviors, as well as the hippocampal response to stresses originating in other regions of the brain.
3. Prohormone convertase 2 (PC2) null mice have increased mu opioid receptor levels accompanied by altered morphine-induced antinociception, tolerance and dependence
K Lutfy, D Parikh, D L Lee, Y Liu, M G Ferrini, A Hamid, T C Friedman Neuroscience. 2016 Aug 4;329:318-25. doi: 10.1016/j.neuroscience.2016.05.021. Epub 2016 May 18.
Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25-10mg/kg) and tested for antinociception 30min later. For tolerance studies, mice were tested in the hot plate test before and 30min following morphine (5mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10mg/kg on this day. On days 2-4, mice received additional doses of morphine (20, 40 and 80mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30min following morphine (5mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80mg/kg) for 4days, implanted with a morphine pellet on day 5 and 3 days later injected with naloxone (1mg/kg) and signs of withdrawal were recorded. Morphine dose-dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal gray area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, lack of opioid peptides led to up-regulation of the MOP and altered morphine-induced antinociception, tolerance and dependence.