Psalmotoxin 1
Need Assistance?
  • US & Canada:
    +
  • UK: +

Psalmotoxin 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Psalmotoxin 1 (PcTx1) is a potent and selective acid-sensing ion channel 1a (ASIC1a) blocker (IC50 = 0.9 nM) and not other members of the family. The blockade is rapidly reversible. PcTx1 has been successfully expressed to produce a spider toxin of the drosophila melanogaster S2 cell for the first time. It displays potent analgesic properties against thermal, mechanical, chemical, inflammatory and neuropathic pain in rodents.

Category
Peptide Inhibitors
Catalog number
BAT-010612
Molecular Formula
C200H312N62O57S6
Molecular Weight
4689.41
IUPAC Name
(4S)-4-amino-5-[[(2S)-1-[[(1R,4S,7S,10S,13S,19S,22R,27R,30S,33S,36S,39S,42S,45S,48S,51S,54S,57R,60S,63S,69S,72R,77R,80S,86S,89S,92S,95S)-27-[[(2S)-1-[(2S)-2-[[(2S)-6-amino-1-[[(2S,3R)-1-[(2S)-2-[[(2S)-6-amino-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-1-oxohexan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]carbamoyl]-51,89,95-tris(4-aminobutyl)-7-(2-amino-2-oxoethyl)-36-benzyl-80-[(2S)-butan-2-yl]-10,42,45,48-tetrakis(3-carbamimidamidopropyl)-33,60,69-tris(2-carboxyethyl)-19-(carboxymethyl)-39-(hydroxymethyl)-13-(1H-imidazol-4-ylmethyl)-54,92-bis(1H-indol-3-ylmethyl)-63-(2-methylpropyl)-2,5,6a,8,11,14,17,20,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,78,81,87,90,93,96,99-triacontaoxo-4,30-di(propan-2-yl)-2a,3a,24,25,74,75-hexathia-a,3,5a,6,9,12,15,18,21,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,79,82,88,91,94,97-triacontazatetracyclo[55.43.4.222,72.082,86]hexahectan-77-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
PcTx1; Psalmopoeus cambridgei toxin-1; Glu-Asp-Cys-Ile-Pro-Lys-Trp-Lys-Gly-Cys-Val-Asn-Arg-His-Gly-Asp-Cys-Cys-Glu-Gly-Leu-Glu-Cys-Trp-Lys-Arg-Arg-Arg-Ser-Phe-Glu-Val-Cys-Val-Pro-Lys-Thr-Pro-Lys-Thr (Disulfide bridge: Cys3-Cys18, Cys10-Cys23, Arg17-Cys33); L-alpha-glutamyl-L-alpha-aspartyl-L-cysteinyl-L-isoleucyl-L-prolyl-L-lysyl-L-tryptophyl-L-lysyl-glycyl-L-cysteinyl-L-valyl-L-asparagyl-L-arginyl-L-histidyl-glycyl-L-alpha-aspartyl-L-cysteinyl-L-cysteinyl-L-alpha-glutamyl-glycyl-L-leucyl-L-alpha-glutamyl-L-cysteinyl-L-tryptophyl-L-lysyl-L-arginyl-L-arginyl-L-arginyl-L-seryl-L-phenylalanyl-L-alpha-glutamyl-L-valyl-L-cysteinyl-L-valyl-L-prolyl-L-lysyl-L-threonyl-L-prolyl-L-lysyl-L-threonine (3->18),(10->23),(17->33)-tris(disulfide)
Appearance
White or Off-white Lyophilized Powder
Purity
>98%
Sequence
EDCIPKWKGCVNRHGDCCEGLECWKRRRSFEVCVPKTPKT (Disulfide bridge: Cys3-Cys18, Cys10-Cys23, Arg17-Cys33)
Storage
Store at -20°C
Solubility
Soluble in Water, Saline Buffer
InChI
InChI=1S/C200H312N62O57S6/c1-13-102(10)157-194(316)261-74-36-54-142(261)189(311)239-116(46-23-28-66-203)167(289)244-128(78-106-84-221-112-42-19-17-40-109(106)112)176(298)230-114(44-21-26-64-201)161(283)223-89-147(269)229-135-91-320-321-93-137-183(305)245-129(79-107-85-222-113-43-20-18-41-110(107)113)177(299)234-115(45-22-27-65-202)164(286)231-119(49-31-69-217-197(208)209)165(287)232-120(50-32-70-218-198(210)211)166(288)233-122(52-34-72-220-200(214)215)169(291)248-134(90-263)181(303)243-127(77-105-38-15-14-16-39-105)175(297)238-125(59-63-151(276)277)173(295)254-155(100(6)7)192(314)253-140(186(308)256-156(101(8)9)193(315)260-73-35-53-141(260)188(310)240-117(47-24-29-67-204)171(293)258-158(103(11)264)195(317)262-75-37-55-143(262)190(312)241-118(48-25-30-68-205)172(294)259-159(104(12)265)196(318)319)96-325-323-94-138(250-179(301)132(82-152(278)279)228-146(268)88-225-163(285)130(80-108-86-216-97-226-108)246-168(290)121(51-33-71-219-199(212)213)235-178(300)131(81-144(207)266)247-191(313)154(99(4)5)255-185(135)307)184(306)252-136(92-322-324-95-139(187(309)257-157)251-180(302)133(83-153(280)281)242-160(282)111(206)56-60-148(270)271)182(304)236-123(57-61-149(272)273)162(284)224-87-145(267)227-126(76-98(2)3)174(296)237-124(170(292)249-137)58-62-150(274)275/h14-20,38-43,84-86,97-104,111,114-143,154-159,221-222,263-265H,13,21-37,44-83,87-96,201-206H2,1-12H3,(H2,207,266)(H,216,226)(H,223,283)(H,224,284)(H,225,285)(H,227,267)(H,228,268)(H,229,269)(H,230,298)(H,231,286)(H,232,287)(H,233,288)(H,234,299)(H,235,300)(H,236,304)(H,237,296)(H,238,297)(H,239,311)(H,240,310)(H,241,312)(H,242,282)(H,243,303)(H,244,289)(H,245,305)(H,246,290)(H,247,313)(H,248,291)(H,249,292)(H,250,301)(H,251,302)(H,252,306)(H,253,314)(H,254,295)(H,255,307)(H,256,308)(H,257,309)(H,258,293)(H,259,294)(H,270,271)(H,272,273)(H,274,275)(H,276,277)(H,278,279)(H,280,281)(H,318,319)(H4,208,209,217)(H4,210,211,218)(H4,212,213,219)(H4,214,215,220)/t102-,103+,104+,111-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,142-,143-,154-,155-,156-,157-,158-,159-/m0/s1
InChI Key
LICLJUGDURFZIM-ACYSAVFESA-N
Canonical SMILES
CCC(C)C1C(=O)N2CCCC2C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC3CSSCC4C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(CSSCC(C(=O)N1)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)O)N)C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)N4)CCC(=O)O)CC(C)C)CCC(=O)O)NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC3=O)C(C)C)CC(=O)N)CCCNC(=N)N)CC5=CNC=N5)CC(=O)O)C(=O)NC(C(C)C)C(=O)N6CCCC6C(=O)NC(CCCCN)C(=O)NC(C(C)O)C(=O)N7CCCC7C(=O)NC(CCCCN)C(=O)NC(C(C)O)C(=O)O)C(C)C)CCC(=O)O)CC8=CC=CC=C8)CO)CCCNC(=N)N)CCCNC(=N)N)CCCNC(=N)N)CCCCN)CC9=CNC1=CC=CC=C19)CCCCN)CC1=CNC2=CC=CC=C21)CCCCN
1. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1
Roger J P Dawson, Daniela Hügin, Catherine Joseph, Sylwia Huber, Pascal Pflimlin, Georg Schmid, Armin Ruf, Jörg Benz, Tim Tetaz, Markus G Rudolph, Michael Hennig, Peter Stohler, Gerd Trube Nat Commun . 2012 Jul 3;3:936. doi: 10.1038/ncomms1917.
Venom-derived peptide toxins can modify the gating characteristics of excitatory channels in neurons. How they bind and interfere with the flow of ions without directly blocking the ion permeation pathway remains elusive. Here we report the crystal structure of the trimeric chicken Acid-sensing ion channel 1 in complex with the highly selective gating modifier Psalmotoxin 1 at 3.0 Å resolution. The structure reveals the molecular interactions of three toxin molecules binding at the proton-sensitive acidic pockets of Acid-sensing ion channel 1 and electron density consistent with a cation trapped in the central vestibule above the ion pathway. A hydrophobic patch and a basic cluster are the key structural elements of Psalmotoxin 1 binding, locking two separate regulatory regions in their relative, desensitized-like arrangement. Our results provide a general concept for gating modifier toxin binding suggesting that both surface motifs are required to modify the gating characteristics of an ion channel.
2. Necrostatin-1 ameliorates adjuvant arthritis rat articular chondrocyte injury via inhibiting ASIC1a-mediated necroptosis
Su-Jing Song, Zhi-Qiang Wang, Chuan-Jun Zhu, Jin-Fang Ge, Fei-Hu Chen, Yong Chen, Bei-Bei Dai, Ren-Peng Zhou, Yu-Bin Feng, Fei Zhu Biochem Biophys Res Commun . 2018 Oct 12;504(4):843-850. doi: 10.1016/j.bbrc.2018.09.031.
Necroptosis, a necrotic cell death pathway regulated by receptor interacting protein (RIP) 1 and 3, plays a key role in pathophysiological processes, including rheumatoid arthritis (RA). However, whether necroptosis is involved in RA articular cartilage damage processes remain unclear. The aim of present study was to investigate the dynamic changes in arthritic chondrocyte necroptosis and the effect of RIP1 inhibitor necrostatin-1 (Nec-1) and acid-sensing ion channels (ASICs) inhibitor amiloride on arthritic cartilage injury and acid-induced chondrocyte necroptosis. Our results demonstrated that the expression of RIP1, RIP3 and mixed lineage kinase domain-like protein phosphorylation (p-MLKL) were increased in adjuvant arthritis (AA) rat articular cartilage in vivo and acid-induced chondrocytes in vitro. High co-expression of ASIC1a and RIP1 showed in AA rat articular cartilage. Moreover, Nec-1 and amiloride could reduce articular cartilage damage and necroinflammation in AA rats. In addition, acid-induced increase in necroptosis markers RIP1/RIP3 were inhibited by Nec-1, ASIC1a-specific blocker psalmotoxin-1 (PcTx-1) or ASIC1a-short hairpin RNA respectively, which revealed that necroptosis is triggered in acid-induced chondrocytes and mediated by ASIC1a. These findings indicated that blocking ASIC1a-mediated chondrocyte necroptosis may provide potential therapeutic strategies for RA treatment.
3. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia-ischemia in newborn piglet striatum
Zeng-Jin Yang, Raymond C Koehler, Xinli Ni, Erin L Carter, Lee J Martin, Kathleen Kibler Neurobiol Dis . 2011 Aug;43(2):446-54. doi: 10.1016/j.nbd.2011.04.018.
Na+,Ca2+-permeable acid-sensing ion channel 1a (ASIC1a) is involved in the pathophysiologic process of adult focal brain ischemia. However, little is known about its role in the pathogenesis of global cerebral ischemia or newborn hypoxia-ischemia (H-I). Here, using a newborn piglet model of asphyxia-induced cardiac arrest, we investigated the effect of ASIC1a-specific blocker psalmotoxin-1 on neuronal injury. During asphyxia and the first 30min of recovery, brain tissue pH fell below 7.0, the approximate activation pH of ASIC1a. Psalmotoxin-1 injection at 20min before hypoxia, but not at 20min of recovery, partially protected the striatonigral and striatopallidal neurons in putamen. Psalmotoxin-1 pretreatment largely attenuated the increased protein kinase A-dependent phosphorylation of DARPP-32 and N-methyl-d-aspartate (NMDA) receptor NR1 subunit and decreased nitrative and oxidative damage to proteins at 3h of recovery. Pretreatment with NMDA receptor antagonist MK-801 also provided partial neuroprotection in putamen, and combined pretreatment with psalmotoxin-1 and MK-801 yielded additive neuroprotection. These results indicate that ASIC1a activation contributes to neuronal death in newborn putamen after H-I through mechanisms that may involve protein kinase A-dependent phosphorylation of NMDA receptor and nitrative and oxidative stress.
Online Inquiry
Verification code
Inquiry Basket