Purotoxin 1
Need Assistance?
  • US & Canada:
    +
  • UK: +

Purotoxin 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is an effective P2X3 receptor modulator, which shows negligible effects on P2X2 and P2X2/3, and exhibits antinociceptive properties in an animal model of inflammatory pain.

Category
Peptide Inhibitors
Catalog number
BAT-009146
CAS number
1396322-38-5
Molecular Formula
C155H249N51O47S8
Molecular Weight
3835.47
IUPAC Name
3-[75-[[2-[(2-aminoacetyl)amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4,66,92-tris(4-aminobutyl)-34-[[1-[[6-amino-1-[(1,6-diamino-1-oxohexan-2-yl)amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]-10,25-bis(2-amino-2-oxoethyl)-45,60-di(butan-2-yl)-57-(3-carbamimidamidopropyl)-48,51-bis(carboxymethyl)-83-(1-hydroxyethyl)-16-(hydroxymethyl)-22-[(4-hydroxyphenyl)methyl]-42-(1H-imidazol-4-ylmethyl)-13,72-dimethyl-89-(2-methylpropyl)-a,2,5,8,11,14,17,20,23,26,29,32,41,44,47,50,53,56,59,62,65,68,71,74,81,84,87,90,93-nonacosaoxo-31-propan-2-yl-2a,3a,36,37,77,78,96,97-octathia-3,6,9,12,15,18,21,24,27,30,33,40,43,46,49,52,55,58,61,64,67,70,73,82,85,88,91,94,99-nonacosazatetracyclo[52.40.4.47,28.239,80]tetrahectan-69-yl]propanoic acid
Synonyms
H-Gly-DL-Tyr-DL-Cys(1)-DL-Ala-DL-Glu-DL-Lys-Gly-DL-xiIle-DL-Arg-DL-Cys(2)-DL-Asp-DL-Asp-DL-xiIle-DL-His-DL-Cys(3)-DL-Cys(1)-DL-xiThr-Gly-DL-Leu-DL-Lys-DL-Cys(2)-DL-Lys-DL-Cys(4)-DL-Asn-DL-Ala-DL-Ser-Gly-DL-Tyr-DL-Asn-DL-Cys(4)-DL-Val-DL-Cys(3)-DL-Arg-DL-Lys-DL-Lys-NH2; glycyl-DL-tyrosyl-DL-cysteinyl-DL-alanyl-DL-alpha-glutamyl-DL-lysyl-glycyl-DL-isoleucyl-DL-arginyl-DL-cysteinyl-DL-alpha-aspartyl-DL-alpha-aspartyl-DL-isoleucyl-DL-histidyl-DL-cysteinyl-DL-cysteinyl-DL-threonyl-glycyl-DL-leucyl-DL-lysyl-DL-cysteinyl-DL-lysyl-DL-cysteinyl-DL-asparagyl-DL-alanyl-DL-seryl-glycyl-DL-tyrosyl-DL-asparagyl-DL-cysteinyl-DL-valyl-DL-cysteinyl-DL-arginyl-DL-lysyl-DL-lysinamide (3->16),(10->21),(15->32),(23->30)-tetrakis(disulfide)
Appearance
White Lyophilized Solid
Purity
>98%
Sequence
GYCAEKGIRCDDIHCCTGLKCKCNASGYNCVCRKK-NH2 (Disulfide bridge: Cys3 and Cys16, Cys10 and Cys21, Cys15 and Cys32, Cys23 and Cys30)
Storage
Store at -20°C
Solubility
Soluble in Water (1 mg/mL)
InChI
InChI=1S/C155H249N51O47S8/c1-12-75(7)120-152(252)188-91(32-25-49-171-155(167)168)132(232)197-105-67-256-255-65-103-143(243)186-89(30-18-23-47-160)131(231)196-104-66-257-260-70-108(200-139(239)98(55-111(163)212)189-136(236)95(52-81-35-39-84(210)40-36-81)180-113(214)60-173-127(227)101(63-207)194-125(225)78(10)176-134(234)97(54-110(162)211)190-145(104)245)148(248)204-119(74(5)6)151(251)202-107(144(244)187-90(31-24-48-170-154(165)166)129(229)184-87(28-16-21-45-158)128(228)181-85(123(164)223)26-14-19-43-156)69-259-258-68-106(199-138(238)96(53-82-59-169-72-175-82)193-153(253)121(76(8)13-2)205-141(241)100(57-118(221)222)191-140(240)99(56-117(219)220)192-146(105)246)147(247)201-109(149(249)206-122(79(11)208)150(250)174-61-114(215)179-93(50-73(3)4)135(235)185-88(130(230)195-103)29-17-22-46-159)71-261-254-64-102(198-137(237)94(178-112(213)58-161)51-80-33-37-83(209)38-34-80)142(242)177-77(9)124(224)182-92(41-42-116(217)218)133(233)183-86(27-15-20-44-157)126(226)172-62-115(216)203-120/h33-40,59,72-79,85-109,119-122,207-210H,12-32,41-58,60-71,156-161H2,1-11H3,(H2,162,211)(H2,163,212)(H2,164,223)(H,169,175)(H,172,226)(H,173,227)(H,174,250)(H,176,234)(H,177,242)(H,178,213)(H,179,215)(H,180,214)(H,181,228)(H,182,224)(H,183,233)(H,184,229)(H,185,235)(H,186,243)(H,187,244)(H,188,252)(H,189,236)(H,190,245)(H,191,240)(H,192,246)(H,193,253)(H,194,225)(H,195,230)(H,196,231)(H,197,232)(H,198,237)(H,199,238)(H,200,239)(H,201,247)(H,202,251)(H,203,216)(H,204,248)(H,205,241)(H,206,249)(H,217,218)(H,219,220)(H,221,222)(H4,165,166,170)(H4,167,168,171)
InChI Key
KECTXGMVIXOQAO-UHFFFAOYSA-N
Canonical SMILES
CCC(C)C1C(=O)NC(C(=O)NC2CSSCC3C(=O)NC(C(=O)NC4CSSCC(C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)N1)CCCCN)CCC(=O)O)C)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)CN)C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)N3)CCCCN)CC(C)C)C(C)O)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC2=O)CC(=O)O)CC(=O)O)C(C)CC)CC6=CNC=N6)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)N)C(C)C)NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC4=O)CC(=O)N)C)CO)CC7=CC=C(C=C7)O)CC(=O)N)CCCCN)CCCNC(=N)N
1. The NAv1.7 blocker protoxin II reduces burn injury-induced spinal nociceptive processing
Jose Vicente Torres-Pérez, Pavel Adamek, Jiri Palecek, Marcela Vizcaychipi, Istvan Nagy, Angelika Varga J Mol Med (Berl). 2018 Jan;96(1):75-84. doi: 10.1007/s00109-017-1599-0. Epub 2017 Oct 23.
Controlling pain in burn-injured patients poses a major clinical challenge. Recent findings suggest that reducing the activity of the voltage-gated sodium channel Nav1.7 in primary sensory neurons could provide improved pain control in burn-injured patients. Here, we report that partial thickness scalding-type burn injury on the rat paw upregulates Nav1.7 expression in primary sensory neurons 3 h following injury. The injury also induces upregulation in phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), a marker for nociceptive activation in primary sensory neurons. The upregulation in p-CREB occurs mainly in Nav1.7-immunopositive neurons and exhibits a peak at 5 min and, following a decline at 30 min, a gradual increase from 1 h post-injury. The Nav1.7 blocker protoxin II (ProTxII) or morphine injected intraperitoneally 15 min before or after the injury significantly reduces burn injury-induced spinal upregulation in phosphorylated serine 10 in histone H3 and phosphorylated extracellular signal-regulated kinase 1/2, which are both markers for spinal nociceptive processing. Further, ProTxII significantly reduces the frequency of spontaneous excitatory post-synaptic currents in spinal dorsal horn neurons following burn injury. Together, these findings indicate that using Nav1.7 blockers should be considered to control pain in burn injury. Key messages: · Burn injury upregulates Nav1.7 expression in primary sensory neurons. · Burn injury results in increased activity of Nav1.7-expressing primary sensory neurons. · Inhibiting Nav1.7 by protoxin II reduces spinal nociceptive processing. · Nav1.7 represents a potential target to reduce pain in burn injury.
2. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins
Huaizong Shen, Dongliang Liu, Kun Wu, Jianlin Lei, Nieng Yan Science. 2019 Mar 22;363(6433):1303-1308. doi: 10.1126/science.aaw2493. Epub 2019 Feb 14.
Voltage-gated sodium channel Nav1.7 represents a promising target for pain relief. Here we report the cryo-electron microscopy structures of the human Nav1.7-β1-β2 complex bound to two combinations of pore blockers and gating modifier toxins (GMTs), tetrodotoxin with protoxin-II and saxitoxin with huwentoxin-IV, both determined at overall resolutions of 3.2 angstroms. The two structures are nearly identical except for minor shifts of voltage-sensing domain II (VSDII), whose S3-S4 linker accommodates the two GMTs in a similar manner. One additional protoxin-II sits on top of the S3-S4 linker in VSDIV The structures may represent an inactivated state with all four VSDs "up" and the intracellular gate closed. The structures illuminate the path toward mechanistic understanding of the function and disease of Nav1.7 and establish the foundation for structure-aided development of analgesics.
3. Fluorescent- and tagged-protoxin II peptides: potent markers of the Nav 1.7 channel pain target
Jérôme Montnach, et al. Br J Pharmacol. 2021 Jul;178(13):2632-2650. doi: 10.1111/bph.15453. Epub 2021 May 14.
Background and purpose: Protoxin II (ProTx II) is a high affinity gating modifier that is thought to selectively block the Nav 1.7 voltage-dependent Na+ channel, a major therapeutic target for the control of pain. We aimed at producing ProTx II analogues entitled with novel functionalities for cell distribution studies and biochemical characterization of its Nav channel targets. Experimental approach: We took advantage of the high affinity properties of the peptide, combined to its slow off rate, to design a number of new tagged analogues useful for imaging and biochemistry purposes. We used high-throughput automated patch-clamp to identify the analogues best matching the native properties of ProTx II and validated them on various Nav -expressing cells in pull-down and cell distribution studies. Key results: Two of the produced ProTx II analogues, Biot-ProTx II and ATTO488-ProTx II, best emulate the pharmacological properties of unlabelled ProTx II, whereas other analogues remain high affinity blockers of Nav 1.7. The biotinylated version of ProTx II efficiently works for the pull-down of several Nav isoforms tested in a concentration-dependent manner, whereas the fluorescent ATTO488-ProTx II specifically labels the Nav 1.7 channel over other Nav isoforms tested in various experimental conditions. Conclusions and implications: The properties of these ProTx II analogues as tools for Nav channel purification and cell distribution studies pave the way for a better understanding of ProTx II channel receptors in pain and their pathophysiological implications in sensory neuronal processing. The new fluorescent ProTx II should also be useful in the design of new drug screening strategies.
Online Inquiry
Verification code
Inquiry Basket