Need Assistance?
  • US & Canada:
    +
  • UK: +

RADA 16

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

RADA 16 is a self-complementary peptide that has been widely studied for various applications in biocompatible materials.

Category
Functional Peptides
Catalog number
BAT-006142
CAS number
289042-25-7
Molecular Formula
C66H113N29O25
Molecular Weight
1712.8
RADA 16
Size Price Stock Quantity
2.5 mg $248 In stock
5 mg $448 In stock
IUPAC Name
(3S)-3-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-acetamido-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-4-[[(2S)-1-amino-1-oxopropan-2-yl]amino]-4-oxobutanoic acid
Purity
95%
Density
1.59±0.1 g/cm3(Predicted)
Sequence
RADARADARADARADA
InChI
InChI=1S/C66H113N29O25/c1-26(47(67)105)80-59(117)39(22-43(97)98)92-52(110)31(6)82-56(114)36(15-11-19-77-64(70)71)89-49(107)28(3)86-61(119)41(24-45(101)102)94-54(112)33(8)84-58(116)38(17-13-21-79-66(74)75)91-50(108)29(4)87-62(120)42(25-46(103)104)95-53(111)32(7)83-57(115)37(16-12-20-78-65(72)73)90-48(106)27(2)85-60(118)40(23-44(99)100)93-51(109)30(5)81-55(113)35(88-34(9)96)14-10-18-76-63(68)69/h26-33,35-42H,10-25H2,1-9H3,(H2,67,105)(H,80,117)(H,81,113)(H,82,114)(H,83,115)(H,84,116)(H,85,118)(H,86,119)(H,87,120)(H,88,96)(H,89,107)(H,90,106)(H,91,108)(H,92,110)(H,93,109)(H,94,112)(H,95,111)(H,97,98)(H,99,100)(H,101,102)(H,103,104)(H4,68,69,76)(H4,70,71,77)(H4,72,73,78)(H4,74,75,79)/t26-,27-,28-,29-,30-,31-,32-,33-,35-,36-,37-,38-,39-,40-,41-,42-/m0/s1
InChI Key
MXRLSGRWOVUTRA-ILUXXBGNSA-N
Canonical SMILES
CC(C(=O)N)NC(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(C)NC(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(C)NC(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(C)NC(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C
1. Evaluation of the hemocompatibility of RADA 16-I peptide
Laleh Taghavi, Asieh Aramvash, Mansooreh Sadat Seyedkarimi, Narges Malek Sabet J Biomater Appl. 2018 Mar;32(8):1024-1031. doi: 10.1177/0885328217748861. Epub 2017 Dec 17.
RADA 16-I is an ionic self-assembling peptide that can form macroscopic scaffolds through β-sheet structures which are used in favor of cell growth and tissue engineering. This peptide has also the ability to stop bleeding effectively and quickly (~20 seconds) when applied directly to the injuries. This study is focused on coagulation process, platelet aggregation, C3 and C4 concentrations, CBC counting, hemolysis, and white blood cell morphology tests to analyze hemocompatibility of RADA 16-I at different concentrations - 0.1, 0.2, 0.3 and 0.5%. According to the results, RADA 16-I hydrogel decreased the number of blood cells, slightly increased clot formation time and platelet aggregation, and yielded negligible hemolysis and only small changes in C3 and C4 concentrations and white blood cell morphology. All by all, the in vitro tests of hemocompatibility showed no perturbation in the blood composition when the peptides were in contact with the blood. The observed rapid hemostasis might be a result of increasing local concentrations of molecules involved in the formation of clot near the peptide hydrogel, thereby making a barrier which ended up with complete hemostasis. In conclusion, our experiments strongly supported further development of biomaterials based on RADA 16-I peptide.
2. Drug treatments for covid-19: living systematic review and network meta-analysis
Reed Ac Siemieniuk, et al. BMJ. 2020 Jul 30;370:m2980. doi: 10.1136/bmj.m2980.
Objective: To compare the effects of treatments for coronavirus disease 2019 (covid-19). Design: Living systematic review and network meta-analysis. Data sources: WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, up to 3 December 2021 and six additional Chinese databases up to 20 February 2021. Studies identified as of 1 December 2021 were included in the analysis. Study selection: Randomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles. Methods: After duplicate data abstraction, a bayesian network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance. Results: 463 trials enrolling 166 581 patients were included; 267 (57.7%) trials and 89 814 (53.9%) patients are new from the previous iteration; 265 (57.2%) trials evaluating treatments with at least 100 patients or 20 events met the threshold for inclusion in the analyses. Compared with standard care, three drugs reduced mortality in patients with mostly severe disease with at least moderate certainty: systemic corticosteroids (risk difference 23 fewer per 1000 patients, 95% credible interval 40 fewer to 7 fewer, moderate certainty), interleukin-6 receptor antagonists when given with corticosteroids (23 fewer per 1000, 36 fewer to 7 fewer, moderate certainty), and Janus kinase inhibitors (44 fewer per 1000, 64 fewer to 20 fewer, high certainty). Compared with standard care, two drugs probably reduce hospital admission in patients with non-severe disease: nirmatrelvir/ritonavir (36 fewer per 1000, 41 fewer to 26 fewer, moderate certainty) and molnupiravir (19 fewer per 1000, 29 fewer to 5 fewer, moderate certainty). Remdesivir may reduce hospital admission (29 fewer per 1000, 40 fewer to 6 fewer, low certainty). Only molnupiravir had at least moderate quality evidence of a reduction in time to symptom resolution (3.3 days fewer, 4.8 fewer to 1.6 fewer, moderate certainty); several others showed a possible benefit. Several drugs may increase the risk of adverse effects leading to drug discontinuation; hydroxychloroquine probably increases the risk of mechanical ventilation (moderate certainty). Conclusion: Corticosteroids, interleukin-6 receptor antagonists, and Janus kinase inhibitors probably reduce mortality and confer other important benefits in patients with severe covid-19. Molnupiravir and nirmatrelvir/ritonavir probably reduce admission to hospital in patients with non-severe covid-19. Systematic review registration: This review was not registered. The protocol is publicly available in the supplementary material. Readers' note: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This is the fifth version of the original article published on 30 July 2020 (BMJ 2020;370:m2980), and previous versions can be found as data supplements. When citing this paper please consider adding the version number and date of access for clarity.
3. Efficacy and safety of COVID-19 vaccines
Carolina Graña, et al. Cochrane Database Syst Rev. 2022 Dec 7;12(12):CD015477. doi: 10.1002/14651858.CD015477.
Background: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally. OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2.
Online Inquiry
Verification code
Inquiry Basket