1. HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice
Simona Vertuani, Chiara Triulzi, Anna Karin Roos, Jehad Charo, Håkan Norell, François Lemonnier, Pavel Pisa, Barbara Seliger, Rolf Kiessling Cancer Immunol Immunother. 2009 May;58(5):653-64. doi: 10.1007/s00262-008-0587-1. Epub 2008 Sep 27.
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2(+) tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369-377, 435-443 and 689-697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4(+) T cells and antibodies are important components.
2. Ii-Key/HER-2/neu(776-790) hybrid peptides induce more effective immunological responses over the native peptide in lymphocyte cultures from patients with HER-2/neu+ tumors
Nectaria N Sotiriadou, et al. Cancer Immunol Immunother. 2007 May;56(5):601-13. doi: 10.1007/s00262-006-0213-z. Epub 2006 Sep 8.
We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells. Moreover, patient-derived CD4+ T cells primed with the hybrid peptides provide a significantly stronger helper effect to autologous CD8+ T cells specific for the HER-2/neu(435-443) CTL epitope, as illustrated by either IFN-gamma ELISPOT assays or specific autologous tumor cell lysis. Hybrid peptide-specific CD4+ T cells strongly enhanced the antitumor efficacy of HER-2/neu(435-443) peptide-specific CTL in the therapy of xenografted SCID mice inoculated with HER-2/neu overexpressing human tumor cell lines. Our data indicate that the promiscuously presented vaccine peptide HER-2/neu(776-790) is amenable to Ii-Key-enhancing effects and supports the therapeutic potential of vaccinating patients with HER-2/neu+ tumors with such Ii-Key/HER-2/neu(776-790) hybrid peptides.
3. Vaccination with human HER-2/neu (435-443) CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo
Angelos D Gritzapis, Louisa G Mahaira, Sonia A Perez, Nike T Cacoullos, Michael Papamichail, Constantin N Baxevanis Cancer Res. 2006 May 15;66(10):5452-60. doi: 10.1158/0008-5472.CAN-05-4018.
HER-2/neu is a self-antigen expressed by tumors and nonmalignant epithelial tissues. The possibility of self-tolerance to HER-2/neu-derived epitopes has raised questions concerning their utility in antitumor immunotherapy. Altered HER-2/neu peptide ligands capable of eliciting enhanced immunity to tumor-associated HER-2/neu epitopes may circumvent this problem. The human CTL peptide HER-2/neu (435-443) [hHER-2(9(435))] represents a xenogeneic altered peptide ligand of its mouse homologue, differing by one amino acid residue at position 4. In contrast to mHER-2(9(435)), vaccination of HLA-A*0201 transgenic (HHD) mice with hHER-2(9(435)) significantly increased the frequency of mHER-2(9(435))-specific CTL and also induced strong protective and therapeutic immunity against the transplantable ALC tumor cell line transfected to coexpress HLA-A*0201 and hHER-2/neu or rHER-2/neu. Similar results were also obtained with wild-type C57BL/6 mice inoculated with HER-2/neu transfectants of ALC. Adoptive transfer of CD8(+) CTL from mice immunized with hHER-2(9(435)) efficiently protected naive syngeneic mice inoculated with ALC tumors. In conclusion, our results show that HER-2(9(435)) serves as a tumor rejection molecule. They also propose a novel approach for generating enhanced immunity against a self-HER-2/neu CTL epitope by vaccinating with xenogeneic altered peptide ligands and provide useful insights for the design of improved peptide-based vaccines for the treatment of patients with HER-2/neu-overexpressing tumors.