1. Robotic real-time near infrared targeted fluorescence imaging in a murine model of prostate cancer: a feasibility study
Humberto Laydner, et al. Urology. 2013 Feb;81(2):451-6. doi: 10.1016/j.urology.2012.02.075.
Objective: To evaluate the detection of near-infrared fluorescence from prostate tumors stained with a prostate-specific membrane antigen (PSMA)-targeted tracer developed in our institution with a novel robotic imaging system. Methods: Prostate cancer cell lines PC3-pip (PSMA positive) and PC3-flu (PSMA negative) were implanted subcutaneously into 6 immunodeficient mice. When tumors reached 5 mm, a PSMA-targeted fluorescent conjugate was injected intravenously. The first 3 mice underwent near-infrared imaging immediately and hourly up to 4 hours after injection to determine the time necessary to obtain peak fluorescence and were killed. The last 3 mice were imaged once preoperatively and were euthanized 120 minutes later. Excision of the tumors was performed by using a novel robotic imaging system to detect near-infrared fluorescence in real time. Specimens were submitted for pathology. Results: In the first 3 mice, we found 120 minutes as the time needed to observe peak fluorescence from the PSMA-positive tumors. We identified discrete near-infrared fluorescence from 2 of 3 PSMA-positive tumors with the robotic imaging system. Surgical margins were negative for all excised specimens except for one PSMA-negative tumor. Conclusions: Real-time near-infrared fluorescence imaging of prostate cancer is feasible with a novel robotic imaging system. Further research is needed to optimize the signal intensity detectable from prostate cancer with our tracer. Toxicologic studies are needed before its clinical use.
2. Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies
Anton G T Terwisscha van Scheltinga, et al. J Nucl Med. 2011 Nov;52(11):1778-85. doi: 10.2967/jnumed.111.092833. Epub 2011 Oct 11.
Fluorescence imaging is currently attracting much interest as a method for intraoperative tumor detection, but most current tracers lack tumor specificity. Therefore, this technique can be further improved by tumor-specific detection. With tumor-targeted antibodies bound to a radioactive label, tumor-specific SPECT or PET is feasible in the clinical setting. The aim of the present study was to apply antibody-based tumor detection to intraoperative optical imaging, using preclinical in vivo mouse models. Methods: Anti-vascular endothelial growth factor (VEGF) antibody bevacizumab and anti-human epidermal growth factor receptor (HER) 2 antibody trastuzumab were labeled with the near-infrared (NIR) fluorescence dye IRDye 800CW. Tumor uptake of the fluorescent tracers and their (89)Zr-labeled radioactive counterparts for PET was determined in human xenograft-bearing athymic mice during 1 wk after tracer injection, followed by ex vivo biodistribution and pathologic examination. Intraoperative imaging of fluorescent VEGF- or HER2-positive tumor lesions was performed in subcutaneous tumors and in intraperitoneal dissemination tumor models. Results: Tumor-to-background ratios, with fluorescent imaging, were 1.93 ± 0.40 for bevacizumab and 2.92 ± 0.29 for trastuzumab on day 6 after tracer injection. Real-time intraoperative imaging detected tumor lesions at even the submillimeter level in intraperitoneal dissemination tumor models. These results were supported by standard histology, immunohistochemistry, and fluorescence microscopy analyses. Conclusion: NIR fluorescence-labeled antibodies targeting VEGF or HER2 can be used for highly specific and sensitive detection of tumor lesions in vivo. These preclinical findings encourage future clinical studies with NIR fluorescence-labeled tumor-specific antibodies for intraoperative-guided surgery in cancer patients.
3. Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer
Lakshmi Sampath, Sunkuk Kwon, Shi Ke, Wei Wang, Rachel Schiff, Michel E Mawad, Eva M Sevick-Muraca J Nucl Med. 2007 Sep;48(9):1501-10. doi: 10.2967/jnumed.107.042234.
Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in cancer because of its participation in signaling pathways regulating cellular proliferation, differentiation, motility, and survival. In this work, we exploited the extracellular binding property of trastuzumab, a clinically therapeutic monoclonal antibody to the second member of the HER family (HER2), to design a diagnostic imaging agent, ((111)In-DTPA)(n)-trastuzumab-(IRDye 800CW)(m), that is dual labeled with (111)In, a gamma-emitter, and a near-infrared (NIR) fluorescent dye, IRDye 800CW, to detect HER2 overexpression in breast cancer cells. The stoichiometric ratios "n" and "m" refer to the number of diethylenetriaminepentaacetic acid dianhydride (DTPA) and IRDye 800CW molecules bound per trastuzumab molecule, respectively. Methods: Fluorescence microscopy and confocal microscopy were used to determine the molecular specificity of (DTPA)(n)-trastuzumab-(IRDye800)(m) in vitro in SKBr3 (HER2-positive) and MDA-MB-231 (HER2-negative) breast cancer cells. SKBr3 cells were incubated with (DTPA)(n)-trastuzumab-(IRDye800)(m) or IRDye800CW or pretreated with trastuzumab or human IgG followed by (DTPA)(n)-trastuzumab-(IRDye800)(m) and examined under a fluorescence microscope. For in vivo characterization, athymic nude mice bearing HER2-overexpressing SKBr3-luc subcutaneous xenografts were injected intravenously with ((111)In-DTPA)(n)-trastuzumab-(IRDye800)(m) and imaged with SPECT and NIR fluorescence imaging at 48 h. Tumor-bearing mice were also injected intravenously with trastuzumab 24 h before administration of ((111)In-DTPA)(n)-trastuzumab-(IRDye800)(m). Nonspecific uptake in the SKBr3-luc tumors was analyzed by injecting the mice with IRDye 800CW and ((111)In-DTPA)(p)-IgG-(IRDye800)(q), where "p" and "q" are the stoichiometric ratios of DTPA and IRDye 800CW bound per IgG antibody, respectively. Results: (DTPA)(n)-trastuzumab-(IRDye800)(m) showed significantly greater binding to SKBr3 cells than to MDA-MB-231 cells. Confocal imaging revealed that this binding occurred predominantly around the cell membrane. Competitive binding studies with excess trastuzumab before incubation with (DTPA)(n)-trastuzumab-(IRDye800)(m) abolished this binding affinity, but pretreatment with nonspecific IgG did not alter binding. In vivo nuclear and optical imaging of SKBr3-luc xenografts injected with ((111)In-DTPA)(n)-trastuzumab-(IRDye800)(m) revealed significantly more uptake in the tumor region than in the contralateral muscle region. The tumor-to-muscle ratio decreased in mice pretreated with trastuzumab and in mice injected with IRDye 800CW and ((111)In-DTPA)(p)-IgG-(IRDye800)(q). Ex vivo imaging of dissected organs confirmed these results. Finally, coregistration of histologic hematoxylin-eosin stains with autoradiography signals from tumor and muscle tissue slices indicated that ((111)In-DTPA)(n)-trastuzumab-(IRDye800)(m) bound only in tumor tissue and not to muscle. Conclusion: Dual-labeled ((111)In-DTPA)(n)-trastuzumab-(IRDye800)(m) may be an effective diagnostic biomarker capable of tracking HER2 overexpression in breast cancer patients.