(S)-N-Carbobenzoxy-7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

(S)-N-Carbobenzoxy-7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
CBZ-Amino Acids
Catalog number
BAT-006639
CAS number
201413-65-2
Molecular Formula
C18H17NO5
Molecular Weight
327.32
(S)-N-Carbobenzoxy-7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
IUPAC Name
(3S)-7-hydroxy-2-phenylmethoxycarbonyl-3,4-dihydro-1H-isoquinoline-3-carboxylic acid
Synonyms
Z-Tic(7-OH)-OH; Z-Tic(7-Hydroxy)-OH
Storage
Store at 2-8 °C (under N2)
InChI
InChI=1S/C18H17NO5/c20-15-7-6-13-9-16(17(21)22)19(10-14(13)8-15)18(23)24-11-12-4-2-1-3-5-12/h1-8,16,20H,9-11H2,(H,21,22)/t16-/m0/s1
InChI Key
NETINWPUOIAANV-INIZCTEOSA-N
Canonical SMILES
C1C(N(CC2=C1C=CC(=C2)O)C(=O)OCC3=CC=CC=C3)C(=O)O
1. Novel 2,7-Substituted (S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acids: Peroxisome Proliferator-Activated Receptor γ Partial Agonists with Protein-Tyrosine Phosphatase 1B Inhibition
Kazuya Otake, Satoru Azukizawa, Shigemitsu Takeda, Masaki Fukui, Arisa Kawahara, Tatsuya Kitao, Hiroaki Shirahase Chem Pharm Bull (Tokyo). 2015;63(12):998-1014. doi: 10.1248/cpb.c15-00508.
A novel series of 2,7-substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid tert-butylamine salt (13jE) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ)-selective agonist (EC50=85 nM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC50=1.0 µM). Compound 13jE partially activated PPARγ, but not PPARα or PPARδ, and antagonized farglitazar, a full PPARγ agonist. Cmax after the oral administration of 13jE at 10 mg/kg was 28.6 µg/mL (53 µM) in male Sprague-Dawley (SD) rats. Repeated administration of 13jE and rosiglitazone for 14 d at 10 mg/kg/d decreased plasma glucose and triglyceride levels significantly in male KK-A(y) mice. Rosiglitazone, but not 13jE, significantly increased the plasma volume and liver weight. In conclusion, 13jE showed stronger hypoglycemic and hypolipidemic effects and weaker hemodilution and hepatotoxic effects than rosiglitazone, suggesting that its safer efficacy may be due to its partial PPARγ agonism and PTP-1B inhibition.
2. A novel series of (S)-2,7-substituted-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids: peroxisome proliferator-activated receptor α/γ dual agonists with protein-tyrosine phosphatase 1B inhibitory activity
Kazuya Otake, et al. Chem Pharm Bull (Tokyo). 2011;59(10):1233-42. doi: 10.1248/cpb.59.1233.
Novel 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-7-(2-{2-[(E)-2-cyclopentylvinyl]-5-methyloxazol-4-yl}ethoxy)-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14c) was identified as a peroxisome proliferator-activated receptor (PPAR) α/γ dual agonist. The transactivation activity of 14c was comparable to that of rosiglitazone in human PPARγ (EC50=0.14 µM) and was much higher than in human PPARα (EC50=0.20 µM). In addition, 14c, but not rosiglitazone, showed human protein-tyrosine phosphatase 1B (PTP-1B) inhibitory activity (IC50=1.85 µM). 14c showed about 10-fold stronger hypoglycemic and hypotriglyceridemic effects than rosiglitazone by repeated application for 14 d in male KK-Ay mice. Furthermore, 14c, but not rosiglitazone, increased hepatic peroxisome acyl CoA oxidase activity at 30 mg/kg/d for 7 d in male Syrian hamsters, probably due to its PPARα agonist activity. 14c did not affect plasma volume at 100 mg/kg/d for 14 d in male ICR mice, while rosiglitazone significantly increased it. In conclusion, 14c is a promising candidate for an efficacious and safe anti-diabetic drug with triple actions as a PPARα/γ dual agonist with PTP-1B inhibitory activity.
3. Novel (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids: peroxisome proliferator-activated receptor γ selective agonists with protein-tyrosine phosphatase 1B inhibition
Kazuya Otake, Satoru Azukizawa, Masaki Fukui, Kazuyoshi Kunishiro, Hikaru Kamemoto, Mamoru Kanda, Tomohiro Miike, Masayasu Kasai, Hiroaki Shirahase Bioorg Med Chem. 2012 Jan 15;20(2):1060-75. doi: 10.1016/j.bmc.2011.11.035. Epub 2011 Dec 1.
A novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-2-[(2E,4E)-hexadienoyl]-7-(2-{5-methyl-2-[(1E)-5-methylhexen-1-yl]oxazol-4-yl}ethoxy)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14i) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ) selective agonist (EC(50)=0.03 μM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC(50)=1.18 μM). C(max) after oral administration of 14i at 10mg/kg was 2.2 μg/ml (4.5 μM) in male SD rats. Repeated administration of 14i and rosiglitazone for 14 days dose-dependently decreased plasma glucose levels, ED(50)=4.3 and 23 mg/kg/day, respectively, in male KK-A(y) mice. In female SD rats, repeated administration of 14i at 12.5-100mg/kg/day for 28 days had no effect on the hematocrit value (Ht) and red blood cell count (RBC), while rosiglitazone significantly decreased them from 25mg/kg/day. In conclusion, 14i showed about a fivefold stronger hypoglycemic effect and fourfold or more weaker hemodilution effect than rosiglitazone, indicating that 14i is 20-fold or more safer than rosiglitazone. Compound 14i is a promising candidate for an efficacious and safe anti-diabetic drug targeting PPARγ and PTP-1B.
Online Inquiry
Verification code
Inquiry Basket