Need Assistance?
  • US & Canada:
    +
  • UK: +

SN50

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

SN50, a cell-permeable peptide inhibitor of NF-Κb, prevents tissue destruction (epithelial defects/ulceration) in a mouse cornea after a central alkali burn.

Category
Peptide Inhibitors
Catalog number
BAT-010192
CAS number
213546-53-3
Molecular Formula
C129H230N36O29S
Molecular Weight
2781.5
SN50
IUPAC Name
(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-aminopropanoyl]amino]propanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]amino]propanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-5-oxopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-4-methylsulfanylbutanoyl]pyrrolidine-2-carboxylic acid
Synonyms
Nuclear Factor NF-KB Inhibitor SN50; NFkappaB Inhibitor
Appearance
Lyophilized Solid
Purity
≥97% by HPLC
Density
1.36±0.1 g/cm3
Sequence
AAVALLPAVLLALLAPVQRKRQKLMP
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
1S/C129H230N36O29S/c1-64(2)57-87(156-117(183)92(62-69(11)12)158-123(189)100(72(17)18)161-106(172)78(25)143-119(185)94-41-35-54-164(94)126(192)93(63-70(13)14)159-118(184)90(60-67(7)8)154-104(170)76(23)144-121(187)99(71(15)16)160-105(171)77(24)141-102(168)74(21)132)113(179)142-75(22)103(169)153-89(59-66(5)6)116(182)157-88(58-65(3)4)114(180)145-79(26)124(190)163-53-34-42-95(163)120(186)162-101(73(19)20)122(188)151-85(45-47-98(134)167)112(178)149-82(39-32-51-139-128(135)136)108(174)146-80(37-28-30-49-130)107(173)148-83(40-33-52-140-129(137)138)109(175)150-84(44-46-97(133)166)111(177)147-81(38-29-31-50-131)110(176)155-91(61-68(9)10)115(181)152-86(48-56-195-27)125(191)165-55-36-43-96(165)127(193)194/h64-96,99-101H,28-63,130-132H2,1-27H3,(H2,133,166)(H2,134,167)(H,141,168)(H,142,179)(H,143,185)(H,144,187)(H,145,180)(H,146,174)(H,147,177)(H,148,173)(H,149,178)(H,150,175)(H,151,188)(H,152,181)(H,153,169)(H,154,170)(H,155,176)(H,156,183)(H,157,182)(H,158,189)(H,159,184)(H,160,171)(H,161,172)(H,162,186)(H,193,194)(H4,135,136,139)(H4,137,138,140)/t74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,99-,100-,101-/m0/s1
InChI Key
FAWLNURBQMTKEB-URDPEVQOSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)N1CCCC1C(=O)NC(C(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CCSC)C(=O)N2CCCC2C(=O)O)NC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(C(C)C)NC(=O)C(C)NC(=O)C3CCCN3C(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(C(C)C)NC(=O)C(C)NC(=O)C(C)N
1. SN50, a Cell-Permeable Inhibitor of Nuclear Factor-κB, Attenuates Ventilator-Induced Lung Injury in an Isolated and Perfused Rat Lung Model
Chiao-Hui Chuang, Chih-Feng Chian, Shiou-Ling Liu, Chen-Liang Tsai, Chi-Huei Chiang Shock . 2016 Aug;46(2):194-201. doi: 10.1097/SHK.0000000000000563.
High tidal volume (VT) ventilation causes the release of various mediators and results in ventilator-induced lung injury (VILI). SN50, a cell-permeable nuclear factor-κB (NF-κB) inhibitory peptide, attenuates inflammation and acute respiratory distress syndrome. However, the mechanisms associated with the effects of SN50 in VILI have not been fully elucidated. We investigated the cellular and molecular mechanisms for the effects of SN50 treatment in VILI. An isolated and perfused rat lung model was exposed to low (5 mL/kg) or high (15 mL/kg) VT ventilation for 6 h. SN50 was administered in the perfusate at the onset of the high-stretch mechanical ventilation. The hemodynamics, lung histological changes, inflammatory responses, and activation of apoptotic pathways were evaluated. VILI was demonstrated by increased pulmonary vascular permeability and lung weight gain, as well as by increased levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), hydrogen peroxide, and macrophage inflammatory protein-2 in the bronchoalveolar lavage fluid. The lung tissue expression of TNF-α, IL-1β, mitogen-activated protein kinases (MAPKs), caspase-3, and phosphorylation of serine/threonine-specific protein kinase (p-AKT) was greater in the high VT group than in the low VT group. Upregulation and activation of NF-κB was associated with increased lung injury in VILI. SN50 attenuated the inflammatory responses, including the expression of IL-1β, TNF-α, MPO, MAPKs, and NF-κB. In addition, the downregulation of apoptosis was evaluated using caspase-3 and p-AKT expression. Furthermore, SN50 mitigated the increases in the lung weights, pulmonary vascular permeability, and lung injury. In conclusion, VILI is associated with inflammatory responses and activation of NF-κB. SN50 inhibits the activation of NF-κB and attenuates VILI.
2. The NFκB inhibitor, SN50, induces differentiation of glioma stem cells and suppresses their oncogenic phenotype
James Connor, Weiwei Yang, Xiuping Liu, Wafik S El-Deiry, Li Zhang, Becky S Webb, Yunsheng Yuan, Arthur Berg, Zhimin Lu, Joshua E Allen, Xingcong Ren, Chang-Gong Liu, Jin-Ming Yang, Siu-Yuan Huang, Yi Zhang, Yan Cheng Cancer Biol Ther . 2014 May;15(5):602-11. doi: 10.4161/cbt.28158.
The malignant phenotype of glioblastoma multiforme (GBM) is believed to be largely driven by glioma stem-like cells (GSCs), and targeting GSCs is now considered a promising new approach to treatment of this devastating disease. Here, we show that SN50, a cell-permeable peptide inhibitor of NFκB, induced robust differentiation of human GSCs, causing loss of their oncogenic potential. We observed that following treatment of GSCs with SN50, their differentiated progeny cells showed significant decreases in their capability to form neuro-spheres and to invade in vitro and a reduction in their tumorigenicity in mouse xenograft models, but had increased sensitivity to the chemotherapeutic drug temozolomide and to radiation treatment. These results suggest that blocking the NFκB pathway may be explored as a useful mean to induce differentiation of GSCs, and provide another supportive evidence for the promise of differentiation therapy in treatment of malignant brain tumors.
3. Inhibitor of nuclear factor-κB, SN50, attenuates lipopolysaccharide-induced lung injury in an isolated and perfused rat lung model
Chiao-Hui Chuang, Chih-Feng Chian, Shiou-Ling Liu, Chi-Huei Chiang Transl Res . 2014 Mar;163(3):211-20. doi: 10.1016/j.trsl.2013.10.002.
NF-κB cell permeable inhibitory peptide (SN50) inhibits translocation of nuclear factor-κB (NF-κB) and production of inflammatory cytokines that are implicated in lipopolysaccharide (LPS)-induced lung injury (LPSLI). However, the protective effect of SN50 in LPSLI is unclear. We explored the cellular and molecular mechanisms of SN50 treatment in LPSLI. LPSLI was induced by intratracheal instillation of 10 mg/kg LPS using an isolated and perfused rat lung model. SN50 was administered in the perfusate 15 minutes before LPS was administered. Hemodynamics, lung histologic change, inflammatory responses, and activation of apoptotic pathways were evaluated. After LPSLI, increased pulmonary vascular permeability and lung weight gain was observed. The levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, myeloperoxidase, and macrophage inflammatory protein-2 increased in bronchoalveolar lavage fluids. Lung-tissue expression of TNF-α, IL-1β, mitogen-activated protein kinases (MAPKs), caspase-3, p-AKT (serine-threonine kinase, also known as protein kinase B), and plasminogen activator inhibitor-1 (PAI-1) was greater in the LPS group compared with controls. Upregulation and activation of NF-κB was associated with increased lung injury in LPSLI. SN50 attenuated the inflammatory responses, including expression of IL-1β, TNF-α, myeloperoxidase, MAPKs, PAI-1, and NF-κB; downregulation of apoptosis indicated by caspase-3 and p-AKT expression was also observed. In addition, SN50 mitigated the increase in the lung weight, pulmonary vascular permeability, and lung injury. In conclusion, LPSLI is associated with inflammatory responses, apoptosis, and coagulation. NF-κB is an important therapeutic target in the treatment of LPSLI. SN50 inhibits translocation of NF-κB and attenuates LPSLI.
Online Inquiry
Verification code
Inquiry Basket