Need Assistance?
  • US & Canada:
    +
  • UK: +

st-Ht31

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

st-Ht31 is the stearate form of Ht-31 peptide, which can inhibit the PKA/AKAP interaction. Cell permeable.

Category
Peptide Inhibitors
Catalog number
BAT-009126
CAS number
188425-80-1
Molecular Formula
C129H217N29O39
Molecular Weight
2798.27
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]amino]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-[[(2S)-4-carboxy-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-3-carboxy-2-(octadecanoylamino)propanoyl]amino]-4-methylpentanoyl]amino]-3-methylpentanoyl]amino]butanoyl]amino]-5-oxopentanoic acid
Synonyms
AKOS032962858
Sequence
DLIEEAASRIVDAVIEQVKAAGAY
Storage
Store at -20°C
InChI
InChI=1S/C129H217N29O39/c1-22-26-27-28-29-30-31-32-33-34-35-36-37-38-39-45-93(162)142-88(62-98(170)171)119(187)149-87(60-66(5)6)120(188)157-103(70(13)23-2)125(193)147-86(53-57-97(168)169)115(183)145-84(51-55-95(164)165)113(181)140-76(19)108(176)138-77(20)110(178)152-91(65-159)121(189)143-82(44-42-59-134-129(132)133)116(184)156-105(72(15)25-4)127(195)155-101(68(9)10)123(191)150-89(63-99(172)173)118(186)141-78(21)111(179)153-102(69(11)12)124(192)158-104(71(14)24-3)126(194)148-85(52-56-96(166)167)114(182)144-83(50-54-92(131)161)117(185)154-100(67(7)8)122(190)146-81(43-40-41-58-130)112(180)139-75(18)107(175)137-73(16)106(174)135-64-94(163)136-74(17)109(177)151-90(128(196)197)61-79-46-48-80(160)49-47-79/h46-49,66-78,81-91,100-105,159-160H,22-45,50-65,130H2,1-21H3,(H2,131,161)(H,135,174)(H,136,163)(H,137,175)(H,138,176)(H,139,180)(H,140,181)(H,141,186)(H,142,162)(H,143,189)(H,144,182)(H,145,183)(H,146,190)(H,147,193)(H,148,194)(H,149,187)(H,150,191)(H,151,177)(H,152,178)(H,153,179)(H,154,185)(H,155,195)(H,156,184)(H,157,188)(H,158,192)(H,164,165)(H,166,167)(H,168,169)(H,170,171)(H,172,173)(H,196,197)(H4,132,133,134)/t70-,71-,72-,73-,74-,75-,76-,77-,78-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,100-,101-,102-,103-,104-,105-/m0/s1
InChI Key
AHVAWKAVLPRRQS-MUBBMYIHSA-N
Canonical SMILES
CCCCCCCCCCCCCCCCCC(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)NC(C(C)CC)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(C)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)CC)C(=O)NC(C(C)C)C(=O)NC(CC(=O)O)C(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(C(C)CC)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(C)C(=O)NCC(=O)NC(C)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)O
1. Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle
Hoeke A Baarsma, Bing Han, Wilfred J Poppinga, Saskia Driessen, Carolina R S Elzinga, Andrew J Halayko, Herman Meurs, Harm Maarsingh, Martina Schmidt Front Cell Dev Biol. 2020 Apr 9;8:165. doi: 10.3389/fcell.2020.00165. eCollection 2020.
With the ability to switch between proliferative and contractile phenotype, airway smooth muscle (ASM) cells can contribute to the progression of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), in which airway obstruction is associated with ASM hypertrophy and hypercontractility. A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules in various tissues, including ASM cells. AKAPs can anchor the regulatory subunits of protein kinase A (PKA), and guide cellular localization via various targeting domains. Here we investigated whether disruption of the AKAP-PKA interaction, by the cell permeable peptide stearated (st)-Ht31, alters human ASM proliferation and contractility. Treatment of human ASM with st-Ht31 enhanced the expression of protein markers associated with cell proliferation in both cultured cells and intact tissue, although this was not accompanied by an increase in cell viability or cell-cycle progression, suggesting that disruption of AKAP-PKA interaction on its own is not sufficient to drive ASM cell proliferation. Strikingly, st-Ht31 enhanced contractile force generation in human ASM tissue with concomitant upregulation of the contractile protein α-sm-actin. This upregulation of α-sm-actin was independent of mRNA stability, transcription or translation, but was dependent on proteasome function, as the proteasome inhibitor MG-132 prevented the st-Ht31 effect. Collectively, the AKAP-PKA interaction appears to regulate markers of the multi-functional capabilities of ASM, and this alter the physiological function, such as contractility, suggesting potential to contribute to the pathophysiology of airway diseases.
2. Ht31 peptide inhibited inflammatory pain by blocking NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice
Wen-Tao Wang, Guo-Qiang Pan, Zi-Yang Zhang, Zhan-Wei Suo, Xian Yang, Xiao-Dong Hu Neuropharmacology. 2015 Feb;89:290-7. doi: 10.1016/j.neuropharm.2014.09.031. Epub 2014 Oct 12.
A kinase anchoring proteins (AKAPs) assemble cAMP-dependent protein kinase (PKA) into signaling complexes with a wide range of ion channels, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptor (NMDAR) that is critical for the central sensitization of nociceptive behaviors. Although PKA has been widely described in the regulation of NMDAR-dependent nociceptive transmission and plasticity, the roles of AKAPs in these processes are largely unknown as yet. The present study interfered with AKAPs/PKA interaction by introducing stearated Ht31 peptide (St-Ht31) into spinal dorsal horn neurons, and investigated the possible changes of primary afferent-evoked, NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs). Whole-cell patch clamp recordings demonstrated that intracellular loading of St-Ht31 through the glass pipettes didn't affect NMDAR-mediated synaptic responses in the spinal cord slices from intact mice. When inflammatory pain was established by intraplantar injection of Complete Freund's Adjuvant (CFA), however, St-Ht31 significantly repressed the amplitudes of NMDAR-EPSCs by selectively removing GluN2B subunit-containing NMDAR out of synapses. With the inhibition of NMDAR-mediated nociceptive transmission, St-Ht31 effectively ameliorated CFA-induced inflammatory pain. Pharmacological manipulation of microtubule-based NMDAR transport, dynamin-dependent NMDAR endocytosis or actin depolymerization abolished the inhibitory effects of St-Ht31 peptide on NMDAR-EPSCs, suggesting that disruption of AKAPs/PKA interaction by St-Ht31 might disturb multiple NMDAR trafficking steps to reduce the receptor synaptic expression and spinal sensitization.
3. Ht31, a protein kinase A anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1
Loretta Ma, Fumin Dong, Maxime Denis, Ying Feng, Ming-Dong Wang, Xiaohui Zha J Biol Chem. 2011 Feb 4;286(5):3370-8. doi: 10.1074/jbc.M110.173666. Epub 2010 Nov 24.
Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid efflux, and ATP-binding cassette transporter A1 (ABCA1) greatly facilitates this process. Remarkably, we found that st-Ht31 completely reverses foam cell formation, and this process is ABCA1-dependent. The reversal is also accompanied by the restoration of well modulated inflammatory response to LPS. There is no detectable toxicity associated with st-Ht31, even when cells export up to 20% cellular cholesterol per hour. Using FRET-based PKA biosensors in live cells, we provide evidence that st-Ht31 drives cholesterol efflux by elevating PKA activity specifically in the cytoplasm. Furthermore, ABCA1 facilitates st-Ht31 uptake. This allows st-Ht31 to effectively remove cholesterol from ABCA1-expressing cells. We speculate that de-anchoring of PKA offers a novel therapeutic strategy to remove excess cholesterol from lipid-laden lesion macrophages.
Online Inquiry
Verification code
Inquiry Basket