Need Assistance?
  • US & Canada:
    +
  • UK: +

Systemin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Systemin, an 18-amino acid peptide isolated from tomato leaves, is a powerful inducer of more than 15 defense genes.

Category
Peptide Inhibitors
Catalog number
BAT-010640
CAS number
137181-56-7
Molecular Formula
C85H144N26O28S
Molecular Weight
2010.28
Systemin
IUPAC Name
(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-1-[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-1-[(2S)-1-[(2S)-6-amino-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-aminopropanoyl]amino]-3-methylbutanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-carboxypropanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]hexanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]butanedioic acid
Synonyms
Ala-Val-Gln-Ser-Lys-Pro-Pro-Ser-Lys-Arg-Asp-Pro-Pro-Lys-Met-Gln-Thr-Asp; L-alanyl-L-valyl-L-glutaminyl-L-seryl-L-lysyl-L-prolyl-L-prolyl-L-seryl-L-lysyl-L-arginyl-L-alpha-aspartyl-L-prolyl-L-prolyl-L-lysyl-L-methionyl-L-glutaminyl-L-threonyl-L-aspartic acid
Appearance
White Lyophilized Powder
Purity
≥95% by HPLC
Density
1.6±0.1 g/cm3
Sequence
AVQSKPPSKRDPPKMQTD
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C85H144N26O28S/c1-43(2)65(106-67(121)44(3)89)78(132)100-49(25-27-61(90)115)71(125)104-55(41-112)75(129)101-52(19-8-11-32-88)80(134)110-36-15-23-59(110)82(136)109-35-14-22-58(109)77(131)105-56(42-113)74(128)96-46(17-6-9-30-86)68(122)95-48(20-12-33-94-85(92)93)70(124)102-53(39-63(117)118)81(135)111-37-16-24-60(111)83(137)108-34-13-21-57(108)76(130)99-47(18-7-10-31-87)69(123)98-51(29-38-140-5)72(126)97-50(26-28-62(91)116)73(127)107-66(45(4)114)79(133)103-54(84(138)139)40-64(119)120/h43-60,65-66,112-114H,6-42,86-89H2,1-5H3,(H2,90,115)(H2,91,116)(H,95,122)(H,96,128)(H,97,126)(H,98,123)(H,99,130)(H,100,132)(H,101,129)(H,102,124)(H,103,133)(H,104,125)(H,105,131)(H,106,121)(H,107,127)(H,117,118)(H,119,120)(H,138,139)(H4,92,93,94)/t44-,45+,46-,47-,48-,49-,50-,51-,52-,53-,54-,55-,56-,57-,58-,59-,60-,65-,66-/m0/s1
InChI Key
LWKMQFABIRSLII-MGZLOUMQSA-N
Canonical SMILES
CC(C)C(C(=O)NC(CCC(=O)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)N1CCCC1C(=O)N2CCCC2C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(CCCN=C(N)N)C(=O)NC(CC(=O)O)C(=O)N3CCCC3C(=O)N4CCCC4C(=O)NC(CCCCN)C(=O)NC(CCSC)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)O)C(=O)NC(CC(=O)O)C(=O)O)NC(=O)C(C)N
1. Systemin--a polypeptide defense signal in plants
A Schaller, C A Ryan Bioessays. 1996 Jan;18(1):27-33. doi: 10.1002/bies.950180108.
Insect and pathogen attacks activate plant defense genes within minutes in nearby cells, and within hours in leaves far distant from the sites of the predator attacks. A search for signal molecules involved in both the localized and distal signalling has resulted in the identification of an 18-amino-acid polypeptide, called systemin, that activates defense genes in leaves of tomato plants when supplied at levels as low as fmols/plant. Several lines of evidence support a role for systemin as a wound hormone. As with animal polypeptide hormones, systemin is derived from a larger precursor protein, called prosystemin, by limited proteolysis. Systemin has been shown by autoradiography to be phloemmobile and, by antisense technology, to be an essential component of the wound-inducible, systemic signal transduction system leading to the transcriptional activation of the defensive genes. A search for the receptor of systemin has led to the identification in plant plasma membranes of a systemin-binding protein. However, this protein has properties not of a receptor, but of a furin-like proteinase that cleaves systemin into smaller polypeptides. Systemin and its precursor prosystemin provide prototypes for the emerging possibilities that polypeptide hormones may have broad roles in signalling environmental stress responses, and in regulating plant growth and development as well.
2. Systemin-mediated long-distance systemic defense responses
Haiyan Zhang, Hui Zhang, Jinxing Lin New Phytol. 2020 Jun;226(6):1573-1582. doi: 10.1111/nph.16495. Epub 2020 Mar 27.
Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.
3. Systemin/Jasmonate-mediated systemic defense signaling in tomato
Jia-Qiang Sun, Hong-Ling Jiang, Chuan-You Li Mol Plant. 2011 Jul;4(4):607-15. doi: 10.1093/mp/ssr008. Epub 2011 Feb 28.
Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the expression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.
Online Inquiry
Verification code
Inquiry Basket