TAT-NR2B9c
Need Assistance?
  • US & Canada:
    +
  • UK: +

TAT-NR2B9c

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Tat-NR2B9c (NA-1) is a membrane-permeable postsynaptic density-95 (PSD-95)-binding (decoy) peptide and a neuroprotective agent that can inhibit neuronal excitotoxicity.

Category
Peptide Inhibitors
Catalog number
BAT-009070
CAS number
500992-11-0
Molecular Formula
C105H188N42O30
Molecular Weight
2518.92
IUPAC Name
(4S)-4-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylpentanoyl]amino]-5-[[(2S)-1-[[(2S)-3-carboxy-1-[[(1S)-1-carboxy-2-methylpropyl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
H-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Leu-Ser-Ser-Ile-Glu-Ser-Asp-Val-OH; Tat-NR2Bct; Tat-NR2B9c; NA-1; L-tyrosyl-glycyl-L-arginyl-L-lysyl-L-lysyl-L-arginyl-L-arginyl-L-glutaminyl-L-arginyl-L-arginyl-L-arginyl-L-lysyl-L-leucyl-L-seryl-L-seryl-L-isoleucyl-L-alpha-glutamyl-L-seryl-L-alpha-aspartyl-L-valine; Nerinetide
Appearance
Lyophilized Solid
Purity
≥95%
Density
1.5±0.1 g/cm3
Sequence
YGRKKRRQRRRKLSSIESDV
Storage
Store at -20°C
Solubility
Soluble in water for a solution up to 3 mg/ml, otherwise acetonitrile is recommended. Avoid repeated freezing and thawing.
InChI
InChI=1S/C105H188N42O30/c1-7-55(6)80(98(175)140-69(34-36-77(154)155)92(169)143-72(50-148)95(172)142-71(48-78(156)157)94(171)146-79(54(4)5)99(176)177)147-97(174)74(52-150)145-96(173)73(51-149)144-93(170)70(46-53(2)3)141-90(167)62(22-10-13-39-108)133-85(162)63(24-15-41-124-101(113)114)135-87(164)65(26-17-43-126-103(117)118)136-88(165)66(27-18-44-127-104(119)120)138-91(168)68(33-35-75(110)152)139-89(166)67(28-19-45-128-105(121)122)137-86(163)64(25-16-42-125-102(115)116)134-84(161)61(21-9-12-38-107)132-83(160)60(20-8-11-37-106)131-82(159)59(23-14-40-123-100(111)112)130-76(153)49-129-81(158)58(109)47-56-29-31-57(151)32-30-56/h29-32,53-55,58-74,79-80,148-151H,7-28,33-52,106-109H2,1-6H3,(H2,110,152)(H,129,158)(H,130,153)(H,131,159)(H,132,160)(H,133,162)(H,134,161)(H,135,164)(H,136,165)(H,137,163)(H,138,168)(H,139,166)(H,140,175)(H,141,167)(H,142,172)(H,143,169)(H,144,170)(H,145,173)(H,146,171)(H,147,174)(H,154,155)(H,156,157)(H,176,177)(H4,111,112,123)(H4,113,114,124)(H4,115,116,125)(H4,117,118,126)(H4,119,120,127)(H4,121,122,128)/t55-,58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,79-,80-/m0/s1
InChI Key
XWQVQFBTSBCKLI-FKXNDIMNSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)NC(CC(=O)O)C(=O)NC(C(C)C)C(=O)O)NC(=O)C(CO)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)CNC(=O)C(CC1=CC=C(C=C1)O)N
1. Tat-HA-NR2B9c attenuate oxaliplatin-induced neuropathic pain
Hai-Hui Zhou, Li Zhang, Hai-Xia Zhang, Bo-Rong Xu, Jin-Ping Zhang, Yu-Jie Zhou, Xiao-Ping Qian, Wei-Hong Ge Exp Neurol. 2019 Jan;311:80-87. doi: 10.1016/j.expneurol.2018.09.014. Epub 2018 Sep 22.
Oxaliplatin is a commonly used chemotherapy drug, which can produce acute and chronic peripheral neurotoxicity. Currently, there is no good therapeutic drug in clinic. Excessive stimulation of N-methyl-d-aspartate receptors (NMDARs) is crucial for the transmission of pain signals. However, directly inhibiting NMDARs can cause severe side effects because they have key physiological functions in the Central nervous system (CNS). Several years ago, we prepared a polypeptide Tat-HA-NR2B9c which can disturb NMDARs-postsynaptic density protein-95 (PSD-95) interaction. In this study, we studied whether Tat-HA-NR2B9c could be an effective treatment for oxaliplatin-induced neuropathic pain. To conform it, a rat model of oxaliplatin-induced neuropathic was established, and analgesic effect of Tat-HA-NR2B9c was studied. Here, we show that oxaliplatin induces the interaction of NMDARs with PSD-95. Uncoupling the complex by Tat-HA-NR2B9c has potent analgesic effect in oxaliplatin-induced cold hyperalgesia and mechanical allodynia without suppressing general behavioral. Tat-HA-NR2B9c neither inhibits NMDARs function nor impacts antitumor activity of oxaliplatin. Thus, this new drug may serve as a treatment for oxaliplatin-induced neuropathic pain, perhaps without major side effects.
2. Intravenous administration of Tat-NR2B9c peptide, a PSD95 inhibitor, attenuates reinstatement of cocaine-seeking behavior in rats
Irena Smaga, et al. Behav Brain Res. 2022 Jan 7;416:113537. doi: 10.1016/j.bbr.2021.113537. Epub 2021 Aug 17.
Cocaine use disorder is a serious, chronic and relapsing disease of the nervous system, for which effective treatments do not yet exist. Recently, the role of the N-methyl-d-aspartate (NMDA) receptor subunit GluN2B has been highlighted in cocaine abstinence followed by extinction training. Since the GluN2B subunit is stabilized at synaptic level by the interaction with its scaffolding protein PSD95, in this study we aimed at investigating efficacy of Tat-NR2B9c peptide, a PSD95 inhibitor, which disrupts the interaction of PSD95 with GluN2B, in the attenuation of cocaine seeking-behavior or cue-induced reinstatement. We found that Tat-NR2B9c, administered intravenously, attenuated the reinstatement of active lever presses induced by a priming dose of cocaine or by drug-associated conditioned stimuli. At the same time, the GluN2B/PSD95 complex levels were decreased in the ventral hippocampus of rats that previously self-administered cocaine injected with Tat-NR2B9c during cocaine- or cue-induced reinstatement. In conclusion, we here provide the first evidence showing that the disruption of the GluN2B/PSD95 complexes during cocaine abstinence followed by extinction training may represent a useful strategy to reduce reinstatement of cocaine-seeking behavior.
3. Tat-NR2B9c prevents excitotoxic neuronal superoxide production
Yanting Chen, Angela M Brennan-Minnella, Sunil Sheth, Jamel El-Benna, Raymond A Swanson J Cereb Blood Flow Metab. 2015 May;35(5):739-42. doi: 10.1038/jcbfm.2015.16. Epub 2015 Feb 11.
The Tat-NR2B9c peptide has shown clinical efficacy as a neuroprotective agent in acute stroke. Tat-NR2B9c is designed to prevent nitric oxide (NO) production by preventing postsynaptic density protein 95 (PSD-95) binding to N-methyl-D-aspartate (NMDA) receptors and neuronal nitric oxide synthase; however, PSD-95 is a scaffolding protein that also couples NMDA receptors to other downstream effects. Here, using neuronal cultures, we show that Tat-NR2B9c also prevents NMDA-induced activation of neuronal NADPH oxidase, thereby blocking superoxide production. Given that both superoxide and NO are required for excitotoxic injury, the neuroprotective effect of Tat-NR2B9c may alternatively be attributable to uncoupling neuronal NADPH oxidase from NMDA receptor activation.
Online Inquiry
Verification code
Inquiry Basket