TLQP-21 (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

TLQP-21 (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-014622
CAS number
1259837-37-0
Molecular Formula
C110H176N40O27
Molecular Weight
2490.83
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-1-[(2S)-5-amino-2-[[(2S)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]propanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]propanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoic acid
Synonyms
H-Thr-Leu-Gln-Pro-Pro-Ser-Ala-Leu-Arg-Arg-Arg-His-Tyr-His-His-Ala-Leu-Pro-Pro-Ser-Arg-OH; L-Threonyl-L-leucyl-L-glutaminyl-L-prolyl-L-prolyl-L-seryl-L-alanyl-L-leucyl-L-arginyl-L-arginyl-L-arginyl-L-histidyl-L-tyrosyl-L-histidyl-L-histidyl-L-alanyl-L-leucyl-L-prolyl-L-prolyl-L-seryl-L-arginine
Appearance
White Powder
Purity
≥95%
Density
1.5±0.1 g/cm3
Sequence
TLQPPSALRRRHYHHALPPSR
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C110H176N40O27/c1-55(2)40-71(138-86(156)58(7)132-97(167)78(50-151)145-99(169)80-22-14-36-147(80)104(174)82-24-16-38-149(82)102(172)69(30-31-84(111)155)136-93(163)72(41-56(3)4)143-101(171)85(112)60(9)153)92(162)135-67(19-11-33-125-108(115)116)89(159)133-66(18-10-32-124-107(113)114)88(158)134-68(20-12-34-126-109(117)118)90(160)140-75(45-63-48-122-53-129-63)95(165)139-73(43-61-26-28-65(154)29-27-61)94(164)142-76(46-64-49-123-54-130-64)96(166)141-74(44-62-47-121-52-128-62)91(161)131-59(8)87(157)144-77(42-57(5)6)103(173)150-39-17-25-83(150)105(175)148-37-15-23-81(148)100(170)146-79(51-152)98(168)137-70(106(176)177)21-13-35-127-110(119)120/h26-29,47-49,52-60,66-83,85,151-154H,10-25,30-46,50-51,112H2,1-9H3,(H2,111,155)(H,121,128)(H,122,129)(H,123,130)(H,131,161)(H,132,167)(H,133,159)(H,134,158)(H,135,162)(H,136,163)(H,137,168)(H,138,156)(H,139,165)(H,140,160)(H,141,166)(H,142,164)(H,143,171)(H,144,157)(H,145,169)(H,146,170)(H,176,177)(H4,113,114,124)(H4,115,116,125)(H4,117,118,126)(H4,119,120,127)/t58-,59-,60+,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,85-/m0/s1
InChI Key
XYTKNIRPYFUTMF-OGTXIUGESA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC1=CN=CN1)C(=O)NC(CC2=CC=C(C=C2)O)C(=O)NC(CC3=CN=CN3)C(=O)NC(CC4=CN=CN4)C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)N5CCCC5C(=O)N6CCCC6C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(C)NC(=O)C(CO)NC(=O)C7CCCN7C(=O)C8CCCN8C(=O)C(CCC(=O)N)NC(=O)C(CC(C)C)NC(=O)C(C(C)O)N
1. TLQP-21 is a low potency partial C3aR activator on human primary macrophages
Xaria X Li, John D Lee, Han S Lee, Richard J Clark, Trent M Woodruff Front Immunol. 2023 Jan 26;14:1086673. doi: 10.3389/fimmu.2023.1086673. eCollection 2023.
TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 μM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.
2. The molecular identity of the TLQP-21 peptide receptor
Bhavani S Sahu, et al. Cell Mol Life Sci. 2021 Dec;78(23):7133-7144. doi: 10.1007/s00018-021-03944-1. Epub 2021 Oct 9.
The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.
3. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression
Wei Zhang, Chao Ni, Jie Sheng, Yanyin Hua, Jiangbo Ma, Lijun Wang, Yu Zhao, Yubo Xing PLoS One. 2013 Nov 21;8(11):e79760. doi: 10.1371/journal.pone.0079760. eCollection 2013.
Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556-576). Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs), we demonstrated that TLQP-21 (10 or 50 nM) dose-dependently prevented apoptosis under high-glucose (30 mmol/L) conditions (the normal glucose concentration is 5.6 mmol/L). TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH) and a reduction in the levels of reactive oxygen species (ROS). TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD), which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.
Online Inquiry
Verification code
Inquiry Basket