Tracheal antimicrobial peptide precursor
Need Assistance?
  • US & Canada:
    +
  • UK: +

Tracheal antimicrobial peptide precursor

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Tracheal antimicrobial peptide precursor is an antimicrobial peptide isolated from Bos taurus. It has activity against gram-positive bacteria, gram-negative bacteria and fungi.

Category
Functional Peptides
Catalog number
BAT-010987
Molecular Formula
C169H296N58O45S7
Molecular Weight
4085
IUPAC Name
(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(1R,3aR,7S,13S,16S,19S,22S,25S,31S,34R,37S,43S,46S,49S,52S,55R,60R,63S,66S,69S,72S,78S,81R,84S,90S,93S,96S)-19,52,72-tris(4-aminobutyl)-69-(2-amino-2-oxoethyl)-22-(3-amino-3-oxopropyl)-25,78,93-tris[(2S)-butan-2-yl]-43,66,96-tris(3-carbamimidamidopropyl)-60-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2,4-diamino-4-oxobutanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-31-[(1R)-1-hydroxyethyl]-13-(hydroxymethyl)-46-methyl-16-(2-methylsulfanylethyl)-2,5a,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,61,64,67,70,73,76,79,82,85,91,94,97-triacontaoxo-37,49,63,84-tetra(propan-2-yl)-a,1a,7a,8a,57,58-hexathia-3,4a,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,62,65,68,71,74,77,80,83,86,92,95,98-triacontazapentacyclo[53.43.7.434,81.03,7.086,90]nonahectane-3a-carbonyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]hexanoic acid
Synonyms
H-Asn-Pro-Val-Ser-Cys(1)-Val-Arg-Asn-Lys-Gly-Ile-Cys(2)-Val-Pro-Ile-Arg-Cys(3)-Pro-Gly-Ser-Met-Lys-Gln-Ile-Gly-Thr-Cys(2)-Val-Gly-Arg-Ala-Val-Lys-Cys(1)-Cys(3)-Arg-Lys-Lys-OH
Sequence
NPVSCVRNKGICVPIRCPGSMKQIGTCVGRAVKCCRKK
InChI
InChI=1S/C169H296N58O45S7/c1-20-87(14)128-155(261)194-73-122(237)217-131(91(18)230)161(267)214-110-79-276-277-80-111-150(256)222-127(86(12)13)164(270)227-66-39-51-115(227)153(259)224-130(89(16)22-3)160(266)206-100(48-36-63-190-169(185)186)140(246)215-112(163(269)226-65-37-49-113(226)151(257)192-70-120(235)197-105(74-228)144(250)203-102(54-67-273-19)141(247)200-95(41-24-29-56-171)135(241)202-101(142(248)223-128)52-53-116(176)231)81-279-278-76-107(146(252)201-98(46-34-61-188-167(181)182)136(242)199-96(42-25-30-57-172)137(243)207-103(165(271)272)44-27-32-59-174)212-147(253)108(210-139(245)97(43-26-31-58-173)204-156(262)124(83(6)7)218-132(238)90(17)195-134(240)94(45-33-60-187-166(179)180)196-119(234)71-193-154(260)123(82(4)5)219-149(110)255)77-274-275-78-109(211-145(251)106(75-229)209-158(264)126(85(10)11)221-152(258)114-50-38-64-225(114)162(268)92(175)68-117(177)232)148(254)220-125(84(8)9)157(263)205-99(47-35-62-189-168(183)184)138(244)208-104(69-118(178)233)143(249)198-93(40-23-28-55-170)133(239)191-72-121(236)216-129(88(15)21-2)159(265)213-111/h82-115,123-131,228-230H,20-81,170-175H2,1-19H3,(H2,176,231)(H2,177,232)(H2,178,233)(H,191,239)(H,192,257)(H,193,260)(H,194,261)(H,195,240)(H,196,234)(H,197,235)(H,198,249)(H,199,242)(H,200,247)(H,201,252)(H,202,241)(H,203,250)(H,204,262)(H,205,263)(H,206,266)(H,207,243)(H,208,244)(H,209,264)(H,210,245)(H,211,251)(H,212,253)(H,213,265)(H,214,267)(H,215,246)(H,216,236)(H,217,237)(H,218,238)(H,219,255)(H,220,254)(H,221,258)(H,222,256)(H,223,248)(H,224,259)(H,271,272)(H4,179,180,187)(H4,181,182,188)(H4,183,184,189)(H4,185,186,190)/t87-,88-,89-,90-,91+,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,123-,124-,125-,126-,127-,128-,129-,130-,131-/m0/s1
InChI Key
QHTGVJBNKLTDJN-ONHACJEVSA-N
Canonical SMILES
CCC(C)C1C(=O)NC2CSSCC3C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)N1)CCCCN)CC(=O)N)CCCNC(=N)N)C(C)C)NC(=O)C(CO)NC(=O)C(C(C)C)NC(=O)C4CCCN4C(=O)C(CC(=O)N)N)C(=O)NC(CSSCC(C(=O)N5CCCC5C(=O)NCC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)N3)C(C)O)C(C)CC)CCC(=O)N)CCCCN)CCSC)CO)NC(=O)C(NC(=O)C(NC(=O)C6CCCN6C(=O)C(NC2=O)C(C)C)C(C)CC)CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)O)CCCCN)C(C)C)C)CCCNC(=N)N)C(C)C
1. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA
G Diamond, M Zasloff, H Eck, M Brasseur, W L Maloy, C L Bevins Proc Natl Acad Sci U S A. 1991 May 1;88(9):3952-6. doi: 10.1073/pnas.88.9.3952.
Extracts of the bovine tracheal mucosa have an abundant peptide with potent antimicrobial activity. The 38-amino acid peptide, which we have named tracheal antimicrobial peptide (TAP), was isolated by a sequential use of size-exclusion, ion-exchange, and reverse-phase chromatographic fractionations using antimicrobial activity as a functional assay. The yield was approximately 2 micrograms/g of wet mucosa. The complete peptide sequence was determined by a combination of peptide and cDNA analysis. The amino acid sequence of TAP is H-Asn-Pro-Val-Ser-Cys-Val-Arg-Asn-Lys-Gly-Ile-Cys-Val-Pro-Ile-Arg-Cys-Pr o- Gly-Ser-Met-Lys-Gln-Ile-Gly-Thr-Cys-Val-Gly-Arg-Ala-Val-Lys-Cys-Cys-Arg- Lys-Lys - OH. Mass spectral analysis of the isolated peptide was consistent with this sequence and indicated the participation of six cysteine residues in the formation of intramolecular disulfide bonds. The size, basic charge, and presence of three intramolecular disulfide bonds is similar to, but clearly distinct from, the defensins, a well-characterized class of antimicrobial peptides from mammalian circulating phagocytic cells. The putative TAP precursor is predicted to be relatively small (64 amino acids), and the mature peptide resides at the extreme carboxyl terminus and is bracketed by a short putative propeptide region and an inframe stop codon. The mRNA encoding this peptide is more abundant in the respiratory mucosa than in whole lung tissue. The purified peptide had antibacterial activity in vitro against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa. In addition, the peptide was active against Candida albicans, indicating a broad spectrum of activity. This peptide appears to be, based on structure and activity, a member of a group of cysteine-rich, cationic, antimicrobial peptides found in animals, insects, and plants. The isolation of TAP from the mammalian respiratory mucosa may provide insight into our understanding of host defense of this vital tissue.
2. Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow
C W Brockus, M W Jackwood, B G Harmon Anim Genet. 1998 Aug;29(4):283-9. doi: 10.1046/j.1365-2052.1998.00338.x.
Four avian beta-defension prepropeptide cDNA sequences [gallinacins: Gal 1 (synonym CHP 1, chicken heterophil peptide 1), and Gal 2; turkey heterophil peptides: THP 1 and THP 2] were amplified from chicken or turkey bone marrow mRNA samples, respectively. Partial chicken beta-defensin cDNA sequences were obtained using degenerate primers based on chicken peptide sequences (Gal 1/CHP 1 and Gal 2). The complete cDNA sequences of the chicken beta-defensins were then determined by designing specific intrapeptidal primers, from the newly acquired sequence, and pairing one primer with a specific poly A primer tail sequence (3' end) and the other primer with an adapter primer in a 5' rapid amplification of cDNA ends (RACE) reaction. The two, turkey beta-defensins were amplified from turkey marrow using primers designed from chicken beta-defensin preproregions. The complete amino acid sequences for the prepropeptides were deduced for all four avian beta-defensins. Previously, only partial mature peptide sequences for the turkey beta-defensins and complete mature peptide sequences for the chicken beta-defensins were known. All sequences obtained translated accurately to complete and partial amino acid sequences reported for beta-defensins purified from chicken and turkey heterophil granules except for one additional amino acid for Gal 1/CHP 1. The four deduced beta-defensin proregions lack the long, negatively charged propiece reported in classical defensin proregions. These regions are thought to stabilize and inactivate the positively charged mature peptide and target the propeptide to the storage granule. Instead, these beta-defensin proregions are shorter and similar to storage granule-free beta-defensins proregions reported for bovine tracheal antimicrobial peptide (TAP) and lingual antimicrobial peptide (LAP). These are the first prepropeptide beta-defensins from leukocyte granules to be completely characterized.
3. Defensins
T Ganz, R I Lehrer Curr Opin Immunol. 1994 Aug;6(4):584-9. doi: 10.1016/0952-7915(94)90145-7.
Defensins are widely distributed and abundant 3-4 kDa antimicrobial peptides that are variable cationic and contain six disulfide-paired cysteines. Three structurally distinct peptide families have been identified: 'classical' defensins, beta-defensins and insect defensins. In many animal species, defensin genes are found in clusters with substantial sequence variability outside the core disulfide-linked cysteines. Defensin peptides have been found in the granules of phagocytes and intestinal Paneth cells, on epithelial surfaces of the intestine and the trachea, and in the hemolymph of insects. They are produced from larger precursors by stepwise, tissue-specific, proteolytic processing, a production resembling that of peptide hormones. Microbes in the phagocytic vacuoles of granulocytes and certain macrophages encounter high concentrations of defensins. Increased transcription of defensin genes and stimulus-dependent release of pre-synthesized defensin-containing cytoplasmic granules contribute to the local antimicrobial response.
Online Inquiry
Verification code
Inquiry Basket