Transportan
Need Assistance?
  • US & Canada:
    +
  • UK: +

Transportan

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Transportan is a chimeric cell-penetrating peptide constructed from the peptides galanin and mastoparan, which has the ability to internalize living cells carrying a hydrophilic load.

Category
Others
Catalog number
BAT-009376
CAS number
203716-10-3
Molecular Formula
C134H227N35O32
Molecular Weight
2840.45
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[(2-aminoacetyl)amino]-3-(1H-indol-3-yl)propanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoyl]amino]-N-[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-6-amino-1-[[(2S,3S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S,3S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-2-oxoethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]butanediamide
Appearance
White Lyophilisate
Sequence
GWTLNSAGYLLGKINLKALAALAKKIL
Storage
Store at -20°C
Solubility
Soluble in water. Avoid repeated freezing and thawing.
InChI
InChI=1S/C134H227N35O32/c1-25-74(17)108(132(199)157-91(111(142)178)51-67(3)4)168-121(188)90(42-32-36-50-138)155-119(186)89(41-31-35-49-137)154-114(181)79(22)150-123(190)94(54-70(9)10)158-115(182)78(21)146-113(180)77(20)149-122(189)93(53-69(7)8)159-116(183)80(23)148-118(185)88(40-30-34-48-136)156-124(191)95(55-71(11)12)162-128(195)101(61-104(141)174)165-133(200)109(75(18)26-2)167-120(187)87(39-29-33-47-135)151-106(176)65-145-117(184)92(52-68(5)6)160-125(192)96(56-72(13)14)161-127(194)98(58-82-43-45-84(172)46-44-82)153-107(177)64-144-112(179)76(19)147-131(198)102(66-170)166-129(196)100(60-103(140)173)163-126(193)97(57-73(15)16)164-134(201)110(81(24)171)169-130(197)99(152-105(175)62-139)59-83-63-143-86-38-28-27-37-85(83)86/h27-28,37-38,43-46,63,67-81,87-102,108-110,143,170-172H,25-26,29-36,39-42,47-62,64-66,135-139H2,1-24H3,(H2,140,173)(H2,141,174)(H2,142,178)(H,144,179)(H,145,184)(H,146,180)(H,147,198)(H,148,185)(H,149,189)(H,150,190)(H,151,176)(H,152,175)(H,153,177)(H,154,181)(H,155,186)(H,156,191)(H,157,199)(H,158,182)(H,159,183)(H,160,192)(H,161,194)(H,162,195)(H,163,193)(H,164,201)(H,165,200)(H,166,196)(H,167,187)(H,168,188)(H,169,197)/t74-,75-,76-,77-,78-,79-,80-,81+,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,108-,109-,110-/m0/s1
InChI Key
PBKWZFANFUTEPS-CWUSWOHSSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(C)C)C(=O)N)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCCCN)NC(=O)C(CC(C)C)NC(=O)C(CC(=O)N)NC(=O)C(C(C)CC)NC(=O)C(CCCCN)NC(=O)CNC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC1=CC=C(C=C1)O)NC(=O)CNC(=O)C(C)NC(=O)C(CO)NC(=O)C(CC(=O)N)NC(=O)C(CC(C)C)NC(=O)C(C(C)O)NC(=O)C(CC2=CNC3=CC=CC=C32)NC(=O)CN
1. Cell-Penetrating Peptides and Transportan
Ülo Langel Pharmaceutics. 2021 Jun 29;13(7):987. doi: 10.3390/pharmaceutics13070987.
In the most recent 25-30 years, multiple novel mechanisms and applications of cell-penetrating peptides (CPP) have been demonstrated, leading to novel drug delivery systems. In this review, I present a brief introduction to the CPP area with selected recent achievements. This is followed by a nostalgic journey into the research in my own laboratories, which lead to multiple CPPs, starting from transportan and paving a way to CPP-based therapeutic developments in the delivery of bio-functional materials, such as peptides, proteins, vaccines, oligonucleotides and small molecules, etc.
2. Co-administration of Transportan Peptide Enhances the Cellular Entry of Liposomes in the Bystander Manner Both In Vitro and In Vivo
Yue-Xuan Li, Nianwu Wang, M Mahadi Hasan, Hong-Bo Pang Mol Pharm. 2022 Nov 7;19(11):4123-4134. doi: 10.1021/acs.molpharmaceut.2c00537. Epub 2022 Sep 7.
Liposomes have been widely used as a drug delivery vector. One way to further improve its therapeutic efficacy is to increase the cell entry efficiency. Covalent conjugation with cell-penetrating peptides (CPPs) and other types of ligands has been the mainstream strategy to tackle this issue. Although efficient, it requires additional chemical modifications on liposomes, which is undesirable for clinical translation. Our previous study showed that the transportan (TP) peptide, an amphiphilic CPP, was able to increase the cellular uptake of co-administered, but not covalently coupled, metallic nanoparticles (NPs). Termed bystander uptake, this process represents a simpler method to increase the cell entry of NPs without chemical modifications. Here, we extended our efforts to liposomes. Our results showed that co-administration with the TP peptide improved the internalization of liposome into a variety of cell lines in vitro. This effect was also observed in primary cells, ex vivo tumor slices, and in vivo tumor tissues. On the other hand, this peptide-assisted liposome internalization did not apply to cationic CPPs, which were the main inducers for bystander uptake in previous studies. We also found that TP-assisted bystander uptake of liposome is receptor dependent, and its activity is more sensitive to the inhibitors of the macropinocytosis pathway, underlining the potential cell entry mechanism. Overall, our study provides a simple strategy based on TP co-administration to increase the cell entry of liposomes, which may open up new avenues to apply TP peptides in nanotherapeutics.
3. Transportan Peptide Stimulates the Nanomaterial Internalization into Mammalian Cells in the Bystander Manner through Macropinocytosis
Yue-Xuan Li, Yushuang Wei, Rui Zhong, Ling Li, Hong-Bo Pang Pharmaceutics. 2021 Apr 14;13(4):552. doi: 10.3390/pharmaceutics13040552.
Covalent coupling with cell-penetrating peptides (CPPs) has been a common strategy to facilitate the cell entry of nanomaterial and other macromolecules. Though efficient, this strategy requires chemical modifications on nanomaterials, which is not always desired for their applications. Recent studies on a few cationic CPPs have revealed that they can stimulate the cellular uptake of nanoparticles (NPs) simply via co-administration (bystander manner), which bypasses the requirement of chemical modification. In this study, we investigated the other classes of CPPs and discovered that transportan (TP) peptide, an amphiphilic CPP, also exhibited such bystander activities. When simply co-administered, TP peptide enabled the cells to engulf a variety of NPs, as well as common solute tracers, while these payloads had little or no ability to enter the cells by themselves. This result was validated in vitro and ex vivo, and TP peptide showed no physical interaction with co-administered NPs (bystander cargo). We further explored the cell entry mechanism for TP peptide and its bystander cargo, and showed that it was mediated by a receptor-dependent macropinocytosis process. Together, our findings improve the understanding of TP-assisted cell entry, and open up a new avenue to apply this peptide for nanomaterial delivery.
Online Inquiry
Verification code
Inquiry Basket