Urocortin II (mouse)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Urocortin II (mouse)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Urocortin II (mouse) shows considerably high affinity for two splice variants of type 2 CRF receptor (CRF-R2) compared to CRF-R1. It activates CRF-R2α and CRF-R2β with almost the same potency as urocortin (rat).

Category
Peptide Inhibitors
Catalog number
BAT-015342
CAS number
330648-32-3
Molecular Formula
C187H320N56O50
Molecular Weight
4152.95
IUPAC Name
(4S)-5-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S,3S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]amino]-3-methylpentanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoic acid
Synonyms
Ucn II (mouse); H-Val-Ile-Leu-Ser-Leu-Asp-Val-Pro-Ile-Gly-Leu-Leu-Arg-Ile-Leu-Leu-Glu-Gln-Ala-Arg-Tyr-Lys-Ala-Ala-Arg-Asn-Gln-Ala-Ala-Thr-Asn-Ala-Gln-Ile-Leu-Ala-His-Val-NH2
Appearance
White Powder
Purity
≥95%
Sequence
VILSLDVPIGLLRILLEQARYKAARNQAATNAQILAHV-NH2
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C187H320N56O50/c1-37-95(25)143(240-177(286)131-51-46-68-243(131)184(293)142(94(23)24)237-175(284)129(80-139(255)256)230-169(278)122(73-89(13)14)227-176(285)130(83-244)235-171(280)124(75-91(17)18)233-182(291)146(98(28)40-4)241-178(287)140(194)92(19)20)179(288)206-82-137(252)215-118(69-85(5)6)166(275)225-120(71-87(9)10)167(276)220-113(50-45-67-205-187(200)201)162(271)238-144(96(26)38-2)181(290)232-123(74-90(15)16)170(279)226-121(72-88(11)12)168(277)223-117(59-63-138(253)254)161(270)221-114(56-60-132(189)247)157(266)212-102(32)152(261)217-111(48-43-65-203-185(196)197)159(268)228-125(76-107-52-54-109(246)55-53-107)172(281)219-110(47-41-42-64-188)156(265)210-99(29)149(258)208-101(31)151(260)216-112(49-44-66-204-186(198)199)160(269)229-128(79-136(193)251)173(282)222-115(57-61-133(190)248)158(267)211-100(30)150(259)209-105(35)155(264)242-147(106(36)245)183(292)234-127(78-135(192)250)165(274)214-103(33)153(262)218-116(58-62-134(191)249)163(272)239-145(97(27)39-3)180(289)231-119(70-86(7)8)164(273)213-104(34)154(263)224-126(77-108-81-202-84-207-108)174(283)236-141(93(21)22)148(195)257/h52-55,81,84-106,110-131,140-147,244-246H,37-51,56-80,82-83,188,194H2,1-36H3,(H2,189,247)(H2,190,248)(H2,191,249)(H2,192,250)(H2,193,251)(H2,195,257)(H,202,207)(H,206,288)(H,208,258)(H,209,259)(H,210,265)(H,211,267)(H,212,266)(H,213,273)(H,214,274)(H,215,252)(H,216,260)(H,217,261)(H,218,262)(H,219,281)(H,220,276)(H,221,270)(H,222,282)(H,223,277)(H,224,263)(H,225,275)(H,226,279)(H,227,285)(H,228,268)(H,229,269)(H,230,278)(H,231,289)(H,232,290)(H,233,291)(H,234,292)(H,235,280)(H,236,283)(H,237,284)(H,238,271)(H,239,272)(H,240,286)(H,241,287)(H,242,264)(H,253,254)(H,255,256)(H4,196,197,203)(H4,198,199,204)(H4,200,201,205)/t95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106+,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,140-,141-,142-,143-,144-,145-,146-,147-/m0/s1
InChI Key
CUFFFRZZHJDQAA-LYWDKBKBSA-N
Canonical SMILES
CCC(C)C(C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)CC)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(=O)N)C(=O)NC(CCC(=O)N)C(=O)NC(C)C(=O)NC(C)C(=O)NC(C(C)O)C(=O)NC(CC(=O)N)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)CC)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)NC(CC2=CN=CN2)C(=O)NC(C(C)C)C(=O)N)NC(=O)C3CCCN3C(=O)C(C(C)C)NC(=O)C(CC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(C(C)CC)NC(=O)C(C(C)C)N
1. Urocortin 1 distribution in mouse brain is strain-dependent
N O Tsivkovskaia, A E Ryabinin, A Z Weitemier Neuroscience . 2005;132(3):729-40. doi: 10.1016/j.neuroscience.2004.12.047.
Urocortin 1 has been implicated in a number of specific behaviors, which include energy balance, stress reactivity and ethanol consumption. To elucidate genetically influenced differences in the mouse urocortin 1 system, we performed immunohistochemical characterization of urocortin 1 distribution in C57BL/6J and DBA/2J mouse brain. Urocortin 1 analysis reveals strain-dependent differences in distribution of urocortin 1 immunoreactive neurons and neuronal fibers. In both strains, the highest number of urocortin 1-positive neurons was observed in the Edinger-Westphal nucleus and lateral superior olive. Urocortin 1-positive neurons were detected in the dorsal nucleus of the lateral lemniscus of DBA/2J mice, but were absent in the C57BL/6J strain. Differences in urocortin 1 fibers were detected in many areas throughout the brain, and were most apparent in the septal areas, thalamic areas, several midbrain regions, and medulla. Strain-dependent distribution of urocortin 1-containing cells and fibers suggests that differences in this neuropeptide system may underlie differences in behavior and physiological responses between these strains. Further, we found that in both mouse strains, urocortin 1 in the Edinger-Westphal nucleus and choline acetyltransferase are not coexpressed. We show that the urocortin 1-positive neurons of this brain area form a separate population of cells that we propose to be called the non-preganglionic Edinger-Westphal nucleus.
2. Urocortin II treatment reduces skeletal muscle mass and function loss during atrophy and increases nonatrophying skeletal muscle mass and function
David B Cody, Mary Beth Bauer, Richard T Hinkle, Elizabeth Donnelly, Robert J Isfort Endocrinology . 2003 Nov;144(11):4939-46. doi: 10.1210/en.2003-0271.
Two corticotropin-releasing factor 2 receptor (CRF2R)-selective peptides have been recently described, urocortin II (also known as stresscopin-related peptide) and urocortin III (stresscopin). We have used urocortin II to evaluate the effects of activation of the CRF2R on skeletal muscle-related physiological processes. Administration of urocortin II to mice prevented the loss of skeletal muscle mass resulting from disuse due to casting, corticosteroid treatment, and nerve damage. In addition, urocortin II treatment prevented the loss of skeletal muscle force and myocyte cross-sectional area that accompanied muscle mass losses resulting from disuse due to casting. Finally, we observed increased skeletal muscle mass and force in normal muscles when mice are treated with urocortin II. These results were confirmed using two additional CRF2R agonists, urocortin I and sauvagine. Thus, activation of the CRF2R modulates skeletal muscle mass in both normal and atrophying muscle. Therefore, CRF2R-selective agonists may find utility in the treatment of skeletal muscle wasting diseases including age-related muscle loss or sarcopenia.
3. Urocortin-3 neurons in the mouse perifornical area promote infant-directed neglect and aggression
Anita E Autry, Ilaria Carta, Catherine Dulac, Ming Tang, Brenda Marin-Rodriguez, Zheng Wu, Nimrod D Rubinstein, Dhananjay Bambah-Mukku, Johannes Kohl, Vikrant Kapoor, Victoria Sedwick Elife . 2021 Aug 23;10:e64680. doi: 10.7554/eLife.64680.
While recent studies have uncovered dedicated neural pathways mediating the positive control of parenting, the regulation of infant-directed aggression and how it relates to adult-adult aggression is poorly understood. Here we show thaturocortin-3(Ucn3)-expressing neurons in the hypothalamic perifornical area (PeFAUcn3) are activated during infant-directed attacks in males and females, but not other behaviors. Functional manipulations of PeFAUcn3neurons demonstrate the role of this population in the negative control of parenting in both sexes. PeFAUcn3neurons receive input from areas associated with vomeronasal sensing, stress, and parenting, and send projections to hypothalamic and limbic areas. Optogenetic activation of PeFAUcn3axon terminals in these regions triggers various aspects of infant-directed agonistic responses, such as neglect, repulsion, and aggression. Thus, PeFAUcn3neurons emerge as a dedicated circuit component controlling infant-directed neglect and aggression, providing a new framework to understand the positive and negative regulation of parenting in health and disease.
Online Inquiry
Verification code
Inquiry Basket