1. Cone snail analogs of the pituitary hormones oxytocin/vasopressin and their carrier protein neurophysin. Proteomic and transcriptomic identification of conopressins and conophysins
Sanjeev Kumar, M Vijayasarathy, M A Venkatesha, P Sunita, P Balaram Biochim Biophys Acta Proteins Proteom. 2020 May;1868(5):140391. doi: 10.1016/j.bbapap.2020.140391. Epub 2020 Feb 10.
Transcriptomic analysis of cone snail venom duct tissue has permitted the identification of diverse conopressin/conophysin precursor sequences from seven distinct Conus species. Multiple precursor isoforms are present in C.monile, C.lividus and C.loroisii. Aqueous extracts of the venom duct tissue from C.monile yield a band, at ~ 15-20 kDa on SDS-PAGE. In-gel trypsin digestion, followed by mass spectrometry establishes the presence of two distinct conopressin/conophysin isoforms that differ at position 8 in the predicted conopressin nonapeptide sequence. Mass spectrometric analysis of aqueous extracts revealed the presence of four conopressin related peptides, whose sequences could be deduced from MS/MS fragmentation patterns. The four sequences determined in this study are CFIRNCPKG*, CFIRNCPEG*, CFIRNCPK* and CFIRNCPE* (* indicates amide), which were further confirmed by comparison with chemically synthesized peptides. A conophysin with a mass of 9419.7 Da was also detected, corresponding to one of the isoforms revealed by the transcriptome data. Complete conservation of fourteen Cys residues and the key residues involved in peptide hormone binding is established by comparison of conophysin sequences, with the crystallographically characterized sequence of bovine neurophysin, in complex with vasopressin. A survey of available sequences for oxytocin/vasopressin peptides in both vertebrates and invertebrates establishes the conopressins as a distinct group in this family. C-terminal amidated, truncated conopressin analogs may arise by alternate post-translational processing.
2. A vasopressin/oxytocin-related conopeptide with gamma-carboxyglutamate at position 8
Carolina Möller, Frank Marí Biochem J. 2007 Jun 15;404(3):413-9. doi: 10.1042/BJ20061480.
Vasopressins and oxytocins are homologous, ubiquitous and multifunctional peptides present in animals. Conopressins are vasopressin/oxytocin-related peptides that have been found in the venom of cone snails, a genus of marine predatory molluscs that envenom their prey with a complex mixture of neuroactive peptides. In the present paper, we report the purification and characterization of a unique conopressin isolated from the venom of Conus villepinii, a vermivorous cone snail species from the western Atlantic Ocean. This novel peptide, designated gamma-conopressin-vil, has the sequence CLIQDCPgammaG* (gamma is gamma-carboxyglutamate and * is C-terminal amidation). The unique feature of this vasopressin/oxytocin-like peptide is that the eighth residue is gamma-carboxyglutamate instead of a neutral or basic residue; therefore it could not be directly classified into either the vasopressin or the oxytocin peptide families. Nano-NMR spectroscopy of the peptide isolated directly from the cone snails revealed that the native gamma-conopressin-vil undergoes structural changes in the presence of calcium. This suggests that the peptide binds calcium, and the calcium-binding process is mediated by the gamma-carboxyglutamate residue. However, the negatively charged residues in the sequence of gamma-conopressin-vil may mediate calcium binding by a novel mechanism not observed in other peptides of this family.
3. A vasotocin-like peptide in Aplysia kurodai ganglia: HPLC and RIA evidence for its identity with Lys-conopressin G
D McMaster, Y Kobayashi, K Lederis Peptides. 1992 May-Jun;13(3):413-21. doi: 10.1016/0196-9781(92)90069-f.
The presence of a vasopressin (VP)- or vasotocin (VT)-like peptide in the central nervous system of the gastropod mollusc Aplysia has been indicated previously. In the case of Aplysia californica, HPLC and RIA evidence suggested the peptide was VT-like but not identical with the nonmammalian vertebrate peptide [Arg8]VT (AVT). In the present study, anterior ganglia extracts from the related species Aplysia kurodai were analyzed by HPLC followed by RIA. Further analysis of the major AVT-IR peak showed it to be indistinguishable, in three distinct solvent systems, from the sea snail venom peptide Lys-conopressin G, but to be different from the vertebrate peptides [Arg8]VP (AVP), [Lys8]VP (LVP), AVT, oxytocin (OT), mesotocin, isotocin, aspargtocin, glumitocin, and valitocin, from the sea snail venom peptide Arg-conopressin S, and from the peptides [Lys8]VT and [Gln8]OT. In addition, the carboxymethylated (CM) A. kurodai peptide had the same HPLC retention time as CM-Lys-conopressin G. The HPLC/RIA results suggest that (i) based on the properties of the solvent systems used, the A. kurodai peptide has two basic amino acids (like the conopressins but unlike the vertebrate peptides), and (ii) there is a high probability that the A. kurodai peptide is identical with Lys-conopressin G.