Need Assistance?
  • US & Canada:
    +
  • UK: +

Xenin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Xenin, a 25-amino acid peptide initially isolated from human gastric mucosa, has 6 C-terminal amino acids in common with amphibian xenopsin. Xenin may stimulate the enzyme release from the exocrine pancreas.

Category
Peptide Inhibitors
Catalog number
BAT-010678
CAS number
144092-28-4
Molecular Formula
C139H224N38O32S
Molecular Weight
2971.57
Xenin
IUPAC Name
(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-6-amino-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]amino]-3-phenylpropanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]amino]-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-3-methylpentanoyl]amino]-4-methylpentanoic acid
Synonyms
Xenin-25; L-Methionyl-L-leucyl-L-threonyl-L-lysyl-L-phenylalanyl-L-α-glutamyl-L-threonyl-L-lysyl-L-seryl-L-alanyl-L-arginyl-L-valyl-L-lysylglycyl-L-leucyl-L-seryl-L-phenylalanyl-L-histidyl-L-prolyl-L-lysyl-L-arginyl-L-prolyl-L-tryptophyl-L-isoleucyl-L-leucine; Human Xenin
Density
1.42±0.1 g/cm3
Sequence
MLTKFETKSARVKGLSFHPKRPWIL
Storage
Store in a cool and dry place (or refer to the Certificate of Analysis).
Solubility
Soluble in DMSO, Water
InChI
1S/C139H224N38O32S/c1-15-79(10)111(132(203)169-103(137(208)209)64-77(6)7)173-126(197)101(67-85-69-152-89-41-23-22-40-87(85)89)167-130(201)107-49-34-59-176(107)135(206)96(47-33-58-151-139(147)148)163-117(188)91(43-25-29-54-141)159-129(200)106-48-35-60-177(106)136(207)102(68-86-70-149-74-154-86)168-124(195)100(66-84-38-20-17-21-39-84)166-128(199)105(73-179)171-122(193)97(62-75(2)3)156-108(182)71-153-116(187)90(42-24-28-53-140)160-131(202)110(78(8)9)172-120(191)94(46-32-57-150-138(145)146)157-114(185)80(11)155-127(198)104(72-178)170-119(190)93(45-27-31-56-143)162-133(204)112(81(12)180)174-121(192)95(50-51-109(183)184)158-123(194)99(65-83-36-18-16-19-37-83)165-118(189)92(44-26-30-55-142)161-134(205)113(82(13)181)175-125(196)98(63-76(4)5)164-115(186)88(144)52-61-210-14/h16-23,36-41,69-70,74-82,88,90-107,110-113,152,178-181H,15,24-35,42-68,71-73,140-144H2,1-14H3,(H,149,154)(H,153,187)(H,155,198)(H,156,182)(H,157,185)(H,158,194)(H,159,200)(H,160,202)(H,161,205)(H,162,204)(H,163,188)(H,164,186)(H,165,189)(H,166,199)(H,167,201)(H,168,195)(H,169,203)(H,170,190)(H,171,193)(H,172,191)(H,173,197)(H,174,192)(H,175,196)(H,183,184)(H,208,209)(H4,145,146,150)(H4,147,148,151)/t79-,80-,81+,82+,88-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,110-,111-,112-,113-/m0/s1
InChI Key
IDHVLSACPFUBDY-QCDLPZBNSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(C)C)C(=O)O)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C3CCCN3C(=O)C(CCCNC(=N)N)NC(=O)C(CCCCN)NC(=O)C4CCCN4C(=O)C(CC5=CN=CN5)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(CCCCN)NC(=O)C(C(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(C)NC(=O)C(CO)NC(=O)C(CCCCN)NC(=O)C(C(C)O)NC(=O)C(CCC(=O)O)NC(=O)C(CC7=CC=CC=C7)NC(=O)C(CCCCN)NC(=O)C(C(C)O)NC(=O)C(CC(C)C)NC(=O)C(CCSC)N
1. Effects of xenin-25 on insulin and glucagon secretions in healthy conscious sheep
Hideaki Hayashi, Yumiko Yasui, Takenori Onaga Domest Anim Endocrinol . 2021 Oct;77:106635. doi: 10.1016/j.domaniend.2021.106635.
The aim of present study was to determine effect of an intravenous injection of xenin-25 on insulin and glucagon secretion in healthy conscious sheep. After feeding once at 17:00, the experiment was started from 9:00 on the next day. Xenin-25 was intravenously (i.v.) injected at a dose of 100 to 1000 pmol/kg with and without the simultaneous injection of glucose at a dose of 200 μmol/kg, and blood was withdrawn before and after the injections. A single xenin-25 injection at 100 and 300 pmol/kg significantly increased the plasma insulin concentration, whereas the 1000 pmol/kg dose did not elicit significantly enhanced insulin response. Plasma glucose and glucagon concentrations did not significantly change after a single xenin-25 injection. Xenin-25 injection significantly and dose-dependently augmented the glucose-induced insulin secretion. However, the changes in the plasma glucose and glucagon level after the glucose injection were not altered by xenin injection. A prior intravenous injection of the neurotensin receptor subtype-1 (NTR-1) antagonist SR 48692 at 100 nmol/kg did not modify the glucose-induced change in plasma insulin caused by xenin-25 at 300 pmol/kg, and intravenous injection of the NTR-2 agonist levocabastine at 1000 pmol/kg did not augment the insulin response to the glucose injection. On the other hand, no xenin-25 immunopositive cells were detected in the ovine pancreas. The mRNAs of the three NTR subtypes were highly expressed in the ovine pancreas in comparison with the expression in the abomasum. These results suggest that xenin-25 released from the upper gastrointestinal tract plays a role of an insulinotropic factor in sheep, possibly through NTRs in the pancreatic islets, but not via NTR-2.
2. Ψ-Xenin-6 enhances sitagliptin effectiveness, but does not improve glucose tolerance
Gerd Hamscher, Victor A Gault, Nigel Irwin, Sarah L Craig J Endocrinol . 2020 May;245(2):219-230. doi: 10.1530/JOE-19-0557.
Recent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture. As expected, sitagliptin therapy was associated with elevated circulating GIP and GLP-1 levels, with concurrent Ψ-xenin-6 not elevating these hormones or enhancing DPP-4 inhibitory activity of the drug. However, combined sitagliptin and Ψ-xenin-6 therapy in HFF mice was associated with further notable benefits, beyond that observed with either treatment alone. This included body weight change similar to lean controls, more pronounced and rapid benefits on circulating glucose and insulin as well as additional improvements in attenuating gluconeogenesis. Favourable effects on pancreatic islet architecture and peripheral insulin sensitivity were more apparent with combined therapy. Expression of hepatic genes involved in gluconeogenesis and insulin action were partially, or fully, restored to normal levels by the treatment regimens, with beneficial effects more prominent in the combination treatment group. These data demonstrate that combined treatment with Ψ-xenin-6 and sitagliptin did not alter glucose tolerance but does offer some metabolic advantages, which merit further consideration as a therapeutic option for type 2 diabetes.
3. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways
Ikuo Kato, Koji Maruta, Yasutada Akiba, Jonathan D Kaunitz, Atsukazu Kuwahara, Izumi Kaji J Pharmacol Exp Ther . 2017 Apr;361(1):151-161. doi: 10.1124/jpet.116.238485.
Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3-secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl-secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3-and Cl-secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.
Online Inquiry
Verification code
Inquiry Basket