1. A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae
E N Elpidina, T A Tsybina, Y E Dunaevsky, M A Belozersky, D P Zhuzhikov, B Oppert Biochimie. 2005 Aug;87(8):771-9. doi: 10.1016/j.biochi.2005.02.013. Epub 2005 Apr 19.
A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.
2. Purification and characterization of a Z-pro-prolinal-insensitive Z-Gly-Pro-7-amino-4-methyl coumarin-hydrolyzing peptidase from bovine serum--a new proline-specific peptidase
Y A Birney, B F O'Connor Protein Expr Purif. 2001 Jul;22(2):286-98. doi: 10.1006/prep.2001.1450.
The study of a new proline-specific peptidase from bovine serum is presented. The enzyme readily cleaves the prolyl oligopeptidase (PO) substrate Z-Gly-Pro-MCA, liberating the fluorophore MCA, thus allowing quantification of enzyme activity. Unlike PO, however, this peptidase is completely insensitive to the PO-specific inhibitor Z-Pro-prolinal and has been designated Z-Pro-prolinal-insensitive Z-Gly-Pro-MCA-hydrolyzing peptidase (ZIP). The two peptidases were successfully separated from each other by phenyl Sepharose hydrophobic interaction chromatography and the subsequent purification focused on the isolation of ZIP from bovine serum. In addition to phenyl Sepharose, calcium phosphate cellulose and DEAE anion-exchange chromatography were employed in the purification, with an overall enzyme yield of 33% and a purification factor of 4023. SDS-PAGE and size-exclusion chromatography indicated a dimeric structure with a relative molecular mass of 174 kDa. The enzyme was stable over the pH range 2.5-10.0. Optimal activity was detected in the pH range 7.4-8.0. Isoelectric focusing revealed a pI of 5.68. Inhibition by AEBSF suggests the peptidase may be a serine protease and ZIP possibly contains a cysteine residue near the active site. alpha(2)M failed to inhibit activity, suggesting oligopeptidase specificity. HPLC analysis revealed a broad substrate specificity for proline-containing peptides. Kinetic analysis indicated that ZIP had a high affinity for Z-Gly-Pro-MCA with a K(m) of 54 microM deduced. Bovine serum ZIP exhibits biophysical characteristics both similar to and different from those of PO isolated from a number of sources and may serve an important physiological function in the degradation of bioactive oligopeptides.
3. Localization of post-proline cleaving peptidases in Tenebrio molitor larval midgut
Irina A Goptar, et al. Biochimie. 2008 Mar;90(3):508-14. doi: 10.1016/j.biochi.2007.11.002. Epub 2007 Nov 17.
Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in Tenebrio molitor larval midgut with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activity at pH 5.3, and was located mainly in the more acidic anterior midgut lumen. The dynamics of PPCP1 activity and the total activity of soluble digestive peptidases in the course of food digestion were similar, suggesting that the enzyme participates in protein digestion. PPCP2 is a nondigestive soluble tissue enzyme evenly distributed along the midgut. An increase in the activity of PPCP2 was observed in buffers of pH 5.6-8.6 and was maximal at pH 7.4. The sensitivity of PPCP2 to inhibitors and the effect of pH are similar to prolyl oligopeptidases with a cysteine residue near the substrate binding site.