1. Aldehydes, Aldehyde Metabolism, and the ALDH2 Consortium
Freeborn Rwere, Xuan Yu, Che-Hong Chen, Eric R Gross Biomolecules. 2022 May 30;12(6):763. doi: 10.3390/biom12060763.
The discovery of aldehydes dates back to 1774 when Carl Wilhelm Scheele synthesized acetaldehyde [...].
2. Microbial engineering for aldehyde synthesis
Aditya M Kunjapur, Kristala L J Prather Appl Environ Microbiol. 2015 Mar;81(6):1892-901. doi: 10.1128/AEM.03319-14. Epub 2015 Jan 9.
Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity.
3. DNA-protein crosslink formation by endogenous aldehydes and AP sites
Jun Nakamura, Mai Nakamura DNA Repair (Amst). 2020 Apr;88:102806. doi: 10.1016/j.dnarep.2020.102806. Epub 2020 Feb 10.
Covalent binding between proteins and a DNA strand produces DNA-protein crosslinks (DPC). DPC are one of the most deleterious types of DNA damage, leading to the blockage of DNA replication and transcription. Both DNA lesions and endogenous products with carbonyl functional groups can produce DPC in genomic DNA under normal physiological conditions. For example, formaldehyde, the most abundant endogenous human carcinogen, and apurinic/apyrimidinic (AP) sites, the most common type of endogenous DNA lesions, has been shown to crosslink proteins and/or DNA through their carbonyl functional groups. Unfortunately, compared to other types of DNA damage, DPC have been less studied and understood. However, a recent advancement has allowed researchers to determine accurate yields of various DNA lesions including formaldehyde-derived DPC with high sensitivity and specificity, paving the way for new developments in this field of research. Here, we review the current literature and remaining unanswered questions on DPC formation by endogenous formaldehyde and various aldehydic 2-deoxyribose lesions.