Z-Trp-Trp-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Z-Trp-Trp-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-006599
CAS number
57850-17-6
Molecular Formula
C30H28N4O5
Molecular Weight
524.58
Z-Trp-Trp-OH
IUPAC Name
(2S)-3-(1H-indol-3-yl)-2-[[(2S)-3-(1H-indol-3-yl)-2-(phenylmethoxycarbonylamino)propanoyl]amino]propanoic acid
Synonyms
(S)-2-((S)-2-(benzyloxycarbonylamino)-3-(1H-indol-3-yl)propanamido)-3-(1H-indol-3-yl)propanoic acid; Z Trp Trp OH
Appearance
White to off-white powder
Purity
≥ 98% (HPLC)
Melting Point
200-206 °C
Storage
Store at 2-8°C
InChI
InChI=1S/C30H28N4O5/c35-28(33-27(29(36)37)15-21-17-32-25-13-7-5-11-23(21)25)26(14-20-16-31-24-12-6-4-10-22(20)24)34-30(38)39-18-19-8-2-1-3-9-19/h1-13,16-17,26-27,31-32H,14-15,18H2,(H,33,35)(H,34,38)(H,36,37)/t26-,27-/m0/s1
InChI Key
IGVSKBFIFVGVSE-SVBPBHIXSA-N
Canonical SMILES
C1=CC=C(C=C1)COC(=O)NC(CC2=CNC3=CC=CC=C32)C(=O)NC(CC4=CNC5=CC=CC=C54)C(=O)O
1. The effect of the WKYMVm peptide on promoting mBMSC secretion of exosomes to induce M2 macrophage polarization through the FPR2 pathway
Wenbo Zhao, Junxian Hu, Qingyi He J Orthop Surg Res. 2021 Mar 3;16(1):171. doi: 10.1186/s13018-021-02321-9.
Background: When multicystic vesicles (precursors of exosomes) are formed in cells, there are two results. One is decomposition by lysosomes, and the other is the generation of exosomes that are transported out through the transmembrane. On the other hand, M2 macrophages promote the formation of local vascularization and provide necessary support for the repair of bone defects. To provide a new idea for the treatment of bone defects, the purpose of our study was to investigate the effect of WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met-NH2) peptide on the secretion of exosomes from murine bone marrow-derived MSCs (mBMSCs) and the effect of exosomes on the polarization of M2 macrophages. Methods: The WKYMVm peptide was used to activate the formyl peptide receptor 2 (FPR2) pathway in mBMSCs. First, we used Cell Counting Kit-8 (CCK-8) to detect the cytotoxic effect of WKYMVm peptide on mBMSCs. Second, we used western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of interferon stimulated gene 15 (ISG15) and transcription factor EB (TFEB) in mBMSCs. Then, we detected lysosomal activity using a lysozyme activity assay kit. Third, we used an exosome extraction kit and western blotting to detect the content of exosomes secreted by mBMSCs. Fourth, we used immunofluorescence and western blotting to count the number of polarized M2 macrophages. Finally, we used an inhibitor to block miRNA-146 in exosomes secreted by mBMSCs and counted the number of polarized M2 macrophages. Results: We first found that the WKYMVm peptide had no toxic effect on mBMSCs at a concentration of 1 μmol/L. Second, we found that when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs, ISG15 and TFEB expression was decreased, leading to increased secretion of exosomes. We also found that lysosomal activity was decreased when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs. Third, we demonstrated that exosomes secreted by mBMSCs promote the polarization of M2 macrophages. Moreover, all these effects can be blocked by the WRWWWW (WRW4, H-Trp-Arg-Trp-Trp-Trp-Trp-OH) peptide, an inhibitor of the FPR2 pathway. Finally, we confirmed the effect of miRNA-146 in exosomes secreted by mBMSCs on promoting the polarization of M2 macrophages. Conclusion: Our findings demonstrated the potential value of the WKYMVm peptide in promoting the secretion of exosomes by mBMSCs and eventually leading to M2 macrophage polarization. We believe that our study could provide a research basis for the clinical treatment of bone defects.
2. Packing of aromatic rings against tryptophan residues in proteins
U Samanta, D Pal, P Chakrabarti Acta Crystallogr D Biol Crystallogr. 1999 Aug;55(Pt 8):1421-7. doi: 10.1107/s090744499900726x.
The geometry of the interaction of the aromatic side chains of phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp) and histidine (His) with the indole ring of Trp has been analyzed using the structures in the Protein Data Bank in order to understand the dependence of the packing behaviour on the size and chemical nature of the aromatic rings. The Phe ring prefers to interact either perpendicularly, with its edge pointing towards the Trp face, or in an offset-stacked arrangement. The edge-to-face motif is typical of a Trp-Trp pair. While parallel stacking is the dominant feature of Trp-His interaction, Tyr packs in a more uniform manner around Trp with a higher than expected occurrence at the edge and a few cases of possible OH-pi interaction.
3. Dynamics and mechanism of dimer dissociation of photoreceptor UVR8
Xiankun Li, Zheyun Liu, Haisheng Ren, Mainak Kundu, Frank W Zhong, Lijuan Wang, Jiali Gao, Dongping Zhong Nat Commun. 2022 Jan 10;13(1):93. doi: 10.1038/s41467-021-27756-w.
Photoreceptors are a class of light-sensing proteins with critical biological functions. UVR8 is the only identified UV photoreceptor in plants and its dimer dissociation upon UV sensing activates UV-protective processes. However, the dissociation mechanism is still poorly understood. Here, by integrating extensive mutations, ultrafast spectroscopy, and computational calculations, we find that the funneled excitation energy in the interfacial tryptophan (Trp) pyramid center drives a directional Trp-Trp charge separation in 80 ps and produces a critical transient Trp anion, enabling its ultrafast charge neutralization with a nearby positive arginine residue in 17 ps to destroy a key salt bridge. A domino effect is then triggered to unzip the strong interfacial interactions, which is facilitated through flooding the interface by channel and interfacial water molecules. These detailed dynamics reveal a unique molecular mechanism of UV-induced dimer monomerization.
Online Inquiry
Verification code
Inquiry Basket