1. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides
Chen Huang, et al. Genome Biol Evol. 2016 Oct 5;8(9):3045-3064. doi: 10.1093/gbe/evw204.
Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals.
2. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins
Tatiana V Ovchinnikova, et al. Biochem Biophys Res Commun. 2006 Sep 22;348(2):514-23. doi: 10.1016/j.bbrc.2006.07.078. Epub 2006 Jul 28.
A novel 40-residue antimicrobial peptide, aurelin, exhibiting activity against Gram-positive and Gram-negative bacteria, was purified from the mesoglea of a scyphoid jellyfish Aurelia aurita by preparative gel electrophoresis and RP-HPLC. Molecular mass (4296.95 Da) and complete amino acid sequence of aurelin (AACSDRAHGHICESFKSFCKDSGRNGVKLRANCKKTCGLC) were determined. Aurelin has six cysteines forming three disulfide bonds. The total RNA was isolated from the jellyfish mesoglea, RT-PCR and cloning were performed, and cDNA was sequenced. A 84-residue preproaurelin contains a putative signal peptide (22 amino acids) and a propiece of the same size (22 amino acids). Aurelin has no structural homology with any previously identified antimicrobial peptides but reveals partial similarity both with defensins and K+ channel-blocking toxins of sea anemones and belongs to ShKT domain family.
3. Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita
Zakhar O Shenkarev, et al. Biochem Biophys Res Commun. 2012 Dec 7;429(1-2):63-9. doi: 10.1016/j.bbrc.2012.10.092. Epub 2012 Nov 5.
Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its (15)N-labeled analogue were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 3(10)-helix and two α-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two α-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the "functional dyad" required for the high-affinity interaction with the K(+)-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.