1. Bacteriocin protein BacL1 of Enterococcus faecalis is a peptidoglycan D-isoglutamyl-L-lysine endopeptidase
Jun Kurushima, Ikue Hayashi, Motoyuki Sugai, Haruyoshi Tomita J Biol Chem. 2013 Dec 27;288(52):36915-25. doi: 10.1074/jbc.M113.506618. Epub 2013 Nov 14.
Enterococcus faecalis strains are commensal bacteria in humans and other animals, and they are also the causative agent of opportunistic infectious diseases. Bacteriocin 41 (Bac41) is produced by certain E. faecalis clinical isolates, and it is active against other E. faecalis strains. Our genetic analyses demonstrated that the extracellular products of the bacL1 and bacA genes, which are encoded in the Bac41 operon, coordinately express the bacteriocin activity against E. faecalis. In this study, we investigated the molecular functions of the BacL1 and BacA proteins. Immunoblotting and N-terminal amino acid sequence analysis revealed that BacL1 and BacA are secreted without any processing. The coincidental treatment with the recombinant BacL1 and BacA showed complete bacteriocin activity against E. faecalis, but neither BacL1 nor BacA protein alone showed the bacteriocin activity. Interestingly, BacL1 alone demonstrated substantial degrading activity against the cell wall fraction of E. faecalis in the absence of BacA. Furthermore, MALDI-TOF MS analysis revealed that BacL1 has a peptidoglycan D-isoglutamyl-L-lysine endopeptidase activity via a NlpC/P60 homology domain. These results collectively suggest that BacL1 serves as a peptidoglycan hydrolase and, when BacA is present, results in the lysis of viable E. faecalis cells.
2. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17
H Tomita, S Fujimoto, K Tanimoto, Y Ike J Bacteriol. 1996 Jun;178(12):3585-93. doi: 10.1128/jb.178.12.3585-3593.1996.
The conjugative plasmid pYI17 (57.5 kb) isolated from Enterococcus faecalis YI717 confers a pheromone response on the host and encodes the bacteriocin 31 gene. Bacteriocin 31 is active against E. hirae 9790, E. faecium, and Listeria monocytogenes. pYI17 was mapped physically by restriction enzyme analysis and the relational clone method. Deletion mutant and sequence analyses of the EcoRI fragment B cloned from pYl17 revealed that a 1.0-kb fragment contained the bacteriocin gene (bacA) and an immunity gene (bacB). This fragment induced bacteriocin activity in E. faecalis OG1X and E. hirae 9790. The bacA gene is located on the pYI17 physical map between 3.37 and 3.57 kb, and bacB is located between 3.59 kb and 3.87 kb, bacA encodes 67 amino acids, and bacB encodes 94 amino acids. The deduced amino acid sequence of the bacA protein contained a series of hydrophobic residues typical of a signal sequence at its amino terminus. The predicted mature bacA protein (43 amino acids) showed sequence homology with the membrane-active class II bacteriocins of lactic acid bacteria. Analysis of Tn5 insertion mutants and the resulting transcripts indicated that these genes are transcribed as an operon composed of bacA, bacB, and an open reading frame located downstream of bacB designated ORF3.
3. Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins
R del Campo, C Tenorio, R Jiménez-Díaz, C Rubio, R Gómez-Lus, F Baquero, C Torres Antimicrob Agents Chemother. 2001 Mar;45(3):905-12. doi: 10.1128/AAC.45.3.905-912.2001.
Bacteriocin production was determined for 218 Enterococcus isolates (Enterococcus faecalis [93] and E. faecium [125]) obtained from different origins (human clinical samples [87], human fecal samples [78], sewage [28], and chicken samples [25]) and showing different vancomycin susceptibility patterns (vancomycin resistant, all of them vanA positive [56], and vancomycin susceptible [162]). All enterococcal isolates were randomly selected except for the vancomycin-resistant ones. A total of 33 isolates of eight different bacterial genera were used as indicators for bacteriocin production. Forty-seven percent of the analyzed enterococcal isolates were bacteriocin producers (80.6% of E. faecalis and 21.6% of E. faecium isolates). The percentage of bacteriocin producers was higher among human clinical isolates (63.2%, 81.8% of vancomycin-resistant isolates and 60.5% of vancomycin-susceptible ones) than among isolates from the other origins (28 to 39.3%). Only one out of the 15 vancomycin-resistant isolates from human fecal samples was a bacteriocin producer, while 44.4% of fecal vancomycin-susceptible isolates were. The bacteriocin produced by the vanA-containing E. faecium strain RC714, named bacteriocin RC714, was further characterized. This bacteriocin activity was cotransferred together with the vanA genetic determinant to E. faecalis strain JH2-2. Bacteriocin RC714 was purified to homogeneity and its primary structure was determined by amino acid sequencing, showing an identity of 88% and a similarity of 92% with the previously described bacteriocin 31 from E. faecalis YI717. The presence of five different amino acids in bacteriocin RC714 suggest that this could be a new bacteriocin. The results obtained suggest that the epidemiology of vancomycin resistance may be influenced by different factors, including bacteriocin production.