BIBO 3304 trifluoroacetate
Need Assistance?
  • US & Canada:
    +
  • UK: +

BIBO 3304 trifluoroacetate

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

BIBO 3304 trifluoroacetate is a potent NPY Y1 receptor antagonist (IC50 = 0.38 and 0.72 nM at human and rat receptors, respectively) displaying > 2600-fold selectivity over Y2, Y4 and Y5 receptors. BIBO 3304 inhibits NPY- and fasting-induced feeding in vivo following central administration. It may be a treatment of bone mass.

Category
Peptide Inhibitors
Catalog number
BAT-010740
CAS number
191868-14-1
Molecular Formula
C29H35N7O3.2CF3CO2H
Molecular Weight
757.69
BIBO 3304 trifluoroacetate
IUPAC Name
(2R)-N-[[4-[(carbamoylamino)methyl]phenyl]methyl]-5-(diaminomethylideneamino)-2-[(2,2-diphenylacetyl)amino]pentanamide;2,2,2-trifluoroacetic acid
Synonyms
BIIE-0246; BIIE 0246; BIIE-0246; CHEMBL540989; GTPL1547; CTK8E9439; BIIE0246; N-[(1R)-1-[[[[4-[[(Aminocarbonyl)amino]methyl]phenyl]methyl]amino]carbonyl]-4-[(aminoiminomethyl)amino]butyl]-α-phenyl-benzeneacetamide ditrifluoroacetate
Related CAS
191868-13-0 (free base)
Purity
≥98% by HPLC
InChI
InChI=1S/C29H35N7O3.2C2HF3O2/c30-28(31)33-17-7-12-24(26(37)34-18-20-13-15-21(16-14-20)19-35-29(32)39)36-27(38)25(22-8-3-1-4-9-22)23-10-5-2-6-11-23;2*3-2(4,5)1(6)7/h1-6,8-11,13-16,24-25H,7,12,17-19H2,(H,34,37)(H,36,38)(H4,30,31,33)(H3,32,35,39);2*(H,6,7)/t24-;;/m1../s1
InChI Key
XWZMETGYCRXJJH-PPLJNSMQSA-N
Canonical SMILES
C1=CC=C(C=C1)C(C2=CC=CC=C2)C(=O)NC(CCCN=C(N)N)C(=O)NCC3=CC=C(C=C3)CNC(=O)N.C(=O)(C(F)(F)F)O.C(=O)(C(F)(F)F)O
1. Selective mediation of nerve injury-induced tactile hypersensitivity by neuropeptide Y
En-Tan Zhang, Michael H Ossipov, Frank Porreca, Cristina Carvajal, Luis Gardell, Yvan Dumont, Remi Quirion, Josephine Lai J Neurosci . 2002 Nov 15;22(22):9858-67. doi: 10.1523/JNEUROSCI.22-22-09858.2002.
Prevention of nerve injury-induced tactile, but not thermal, hypersensitivity is achieved by ipsilateral lesions of the dorsal columns or lidocaine microinjection into the nucleus gracilis (n. gracilis). These and other data support the possibility that tactile hyperresponsiveness after nerve injury may be selectively mediated by a low-threshold myelinated fiber pathway to the n. gracilis. Here we identify a transmitter that might selectively mediate such injury-induced tactile hypersensitivity. Neuropeptide Y (NPY), normally not detected in the dorsal root ganglion (DRG) or in the n. gracilis of rats, became markedly upregulated at both sites and in the spinal cord after spinal nerve injury. Injury-induced NPY-IR occurred predominately in large-diameter DRG cells, and the NPY-IR in the n. gracilis was blocked by dorsal rhizotomy or dorsal column lesion. NPY microinjection into the n. gracilis of uninjured rats elicited reversible tactile, but not thermal, hypersensitivity only in the ipsilateral hindpaw. Administration of anti-NPY antiserum, but not control serum or preabsorbed serum, into the n. gracilis ipsilateral to nerve injury reversed tactile, but not thermal, hypersensitivity. Similarly, microinjection of the NPY antagonists NPY(18-36) and (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphenylacetyl)-argininamide trifluoroacetate, into the n. gracilis ipsilateral to the injury reversed tactile, but not thermal, hypersensitivity. Antagonist administration into the contralateral n. gracilis had no effect on injury-induced hypersensitivity. These data suggest the selective mediation of nerve injury-induced tactile hypersensitivity by upregulated NPY via large fiber input to n. gracilis. Selective reversal of injury-induced tactile allodynia by NPY receptor antagonists would have significant implications for human neuropathic conditions.
2. Neuropeptide Y prolongs non-social memory and differentially affects acquisition, consolidation, and retrieval of non-social and social memory in male mice
Johannes Kornhuber, Iulia Zoicas Sci Rep . 2017 Jul 28;7(1):6821. doi: 10.1038/s41598-017-07273-x.
Neuropeptide Y (NPY) and its receptors (especially Y1, Y2, and Y5) are highly expressed in brain regions involved in learning and memory processes. Accordingly, NPY was shown to modulate cognitive functions in rodents. Here, we investigated possible memory-enhancing effects of NPY and determined the role of the NPY system in the acquisition, consolidation, and retrieval of non-social and social memory in mice, using the object and social discrimination tests, respectively. Intracerebroventricular (icv) infusion of NPY (1 nmol/2 µl) prolonged retention of non-social (object) memory, but not of social memory. This effect was blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (2 nmol/2 µl), but not by the Y2 receptor antagonist BIIE0246 (2 nmol/2 µl). While icv infusion of NPY did not affect the acquisition, consolidation, and retrieval of non-social and social memory, icv infusion of BIBO3304 trifluoroacetate and BIIE0246 blocked the consolidation of non-social memory and the retrieval of both non-social and social memory. This study suggests that NPY has memory-enhancing effects in a non-social context by specifically acting on Y1 receptors. It further suggests that the central NPY system exerts differential effects on the sequential phases of non-social and social memory.
3. Neuropeptide Y Reduces Social Fear in Male Mice: Involvement of Y1 and Y2 Receptors in the Dorsolateral Septum and Central Amygdala
Johannes Kornhuber, Iulia Zoicas Int J Mol Sci . 2021 Sep 20;22(18):10142. doi: 10.3390/ijms221810142.
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We previously showed that intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC) and localized these effects to the dorsolateral septum (DLS) and central amygdala (CeA). In the present study, we aimed to identify the receptor subtypes that mediate these local effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduced the expression of SFC-induced social fear in a brain region- and receptor-specific manner in male mice. In the DLS, NPY reduced the expression of social fear by acting on Y2 receptors but not on Y1 receptors. As such, prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μL/side) but not the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μL/side) blocked the effects of NPY in the DLS. In the CeA, however, BIBO3304 trifluoroacetate but not BIIE0246 blocked the effects of NPY, suggesting that NPY reduced the expression of social fear by acting on Y1 receptors but not Y2 receptors within the CeA. This study suggests that at least two distinct receptor subtypes are differentially recruited in the DLS and CeA to mediate the effects of NPY on the expression of social fear.
Online Inquiry
Verification code
Inquiry Basket