Biotinyl-εAhx-ω-Conotoxin GVIA
Need Assistance?
  • US & Canada:
    +
  • UK: +

Biotinyl-εAhx-ω-Conotoxin GVIA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Biotinyl-εAhx-ω-Conotoxin GVIA, a biotinylated ω-conotoxin GVIA, is a useful calcium channel characterization ligand.

Category
Peptide Inhibitors
Catalog number
BAT-014534
CAS number
151928-23-3
Molecular Formula
C136H207N41O46S7
Molecular Weight
3376.85
Biotinyl-εAhx-ω-Conotoxin GVIA
IUPAC Name
68-amino-36-(4-aminobutyl)-N-[1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]-22,51-bis(2-amino-2-oxoethyl)-33,60-bis(3-carbamimidamidopropyl)-8,47,78-trihydroxy-13,39-bis(1-hydroxyethyl)-4,16,57,74,86,89-hexakis(hydroxymethyl)-19,42-bis[(4-hydroxyphenyl)methyl]-2,5,11,14,17,20,23,32,35,38,41,44,50,53,56,59,62,69,72,75,81,84,87,90,97-pentacosaoxo-71-[4-[6-[5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanoylamino]hexanoylamino]butyl]-27,28,65,66,93,94-hexathia-3,6,12,15,18,21,24,31,34,37,40,43,49,52,55,58,61,70,73,76,82,85,88,91,96-pentacosazahexacyclo[52.37.4.225,63.06,10.045,49.076,80]heptanonacontane-30-carboxamide
Synonyms
Biotinyl-εAhx-Cys-Lys-Ser-Hyp-Gly-Ser-Ser-Cys-Ser-Hyp-Thr-Ser-Tyr-Asn-Cys-Cys-Arg-Ser-Cys-Asn-Hyp-Tyr-Thr-Lys-Arg-Cys-Tyr-NH2 (Disulfide bridge: Cys2-Cys17, Cys9-Cys20, Cys16-Cys27); ω-Conotoxin GVIA, 2-[N6-[6-[[5-(hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl)-1-oxopentyl]amino]-1-oxohexyl]-L-lysine]-, [3aS-(3aα,4β,6aα)]-
Appearance
White Powder
Purity
≥95%
Sequence
Biotinyl-εAhx-CKSGSSCSTSYNCCRSCNYTKRCY-NH2 (Disulfide bridge: Cys2-Cys17, Cys9-Cys20, Cys16-Cys27)
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C136H207N41O46S7/c1-63(184)105-129(218)155-76(14-7-9-33-137)110(199)153-78(17-13-37-149-135(144)145)113(202)166-92(122(211)156-79(108(141)197)38-65-21-27-68(186)28-22-65)59-227-230-62-95-125(214)170-91-58-226-225-56-74(138)109(198)152-75(15-8-11-35-147-102(194)19-4-3-10-34-146-103(195)20-6-5-18-99-107-90(57-224-99)171-136(223)174-107)112(201)164-88(54-182)132(221)175-47-71(189)41-96(175)126(215)150-46-104(196)151-84(50-178)117(206)162-86(52-180)120(209)169-94(124(213)165-89(55-183)133(222)177-49-73(191)43-98(177)128(217)173-106(64(2)185)130(219)163-87(53-181)118(207)157-80(39-66-23-29-69(187)30-24-66)114(203)158-82(44-100(139)192)115(204)167-95)61-229-228-60-93(168-119(208)85(51-179)161-111(200)77(154-121(91)210)16-12-36-148-134(142)143)123(212)160-83(45-101(140)193)131(220)176-48-72(190)42-97(176)127(216)159-81(116(205)172-105)40-67-25-31-70(188)32-26-67/h21-32,63-64,71-99,105-107,178-191H,3-20,33-62,137-138H2,1-2H3,(H2,139,192)(H2,140,193)(H2,141,197)(H,146,195)(H,147,194)(H,150,215)(H,151,196)(H,152,198)(H,153,199)(H,154,210)(H,155,218)(H,156,211)(H,157,207)(H,158,203)(H,159,216)(H,160,212)(H,161,200)(H,162,206)(H,163,219)(H,164,201)(H,165,213)(H,166,202)(H,167,204)(H,168,208)(H,169,209)(H,170,214)(H,172,205)(H,173,217)(H4,142,143,148)(H4,144,145,149)(H2,171,174,223)
InChI Key
QXQAIAJLCHSWQN-UHFFFAOYSA-N
Canonical SMILES
CC(C1C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC2CSSCC(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C3CC(CN3C(=O)C(NC(=O)C4CSSCC(C(=O)NC(C(=O)N5CC(CC5C(=O)N1)O)CO)NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C6CC(CN6C(=O)C(NC(=O)C(NC(=O)C(CSSCC(C(=O)NC(C(=O)NC(C(=O)N4)CO)CCCNC(=N)N)NC2=O)N)CCCCNC(=O)CCCCCNC(=O)CCCCC7C8C(CS7)NC(=O)N8)CO)O)CO)CO)CC(=O)N)O)CC9=CC=C(C=C9)O)C(C)O)CCCCN)CCCNC(=N)N)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)N)CC(=O)N)CC1=CC=C(C=C1)O)CO)O
1. ω-Conotoxin GVIA mimetics that bind and inhibit neuronal Ca(v)2.2 ion channels
Charlotte Elisabet Tranberg, Aijun Yang, Irina Vetter, Jeffrey R McArthur, Jonathan B Baell, Richard J Lewis, Kellie L Tuck, Peter J Duggan Mar Drugs. 2012 Oct;10(10):2349-2368. doi: 10.3390/md10102349. Epub 2012 Oct 22.
The neuronal voltage-gated N-type calcium channel (Ca(v)2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a ¹²⁵I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Ca(v)2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the ¹²⁵I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner.
2. Effects of omega-conotoxin GVIA on cardiac sympathetic nerve function
N Yahagi, T Akiyama, T Yamazaki J Auton Nerv Syst. 1998 Jan 19;68(1-2):43-8. doi: 10.1016/s0165-1838(97)00120-3.
Using a cardiac dialysis technique, the effects of omega-conotoxin GVIA (N-type Ca2+ channel blocker) on cardiac sympathetic nerve function was examined in anesthetized cats. Dialysis probes were implanted in the left ventricular wall and the concentration of dialysate norepinephrine (NE) served as an indicator of NE output at cardiac sympathetic nerve endings. Administration of omega-conotoxin GVIA (10 microg/kg i.v.) suppressed dialysate NE responses to the nerve stimulation. The ouabain (1 microM) induced NE increment was less markedly suppressed by omega-conotoxin GVIA. Furthermore, omega-conotoxin GVIA neither influenced neuronal NE uptake nor tyramine induced release of NE from stores. These findings suggest that the neuronal effect of omega-conotoxin GVIA is attributable to a reduction of exocytotic NE release without alterations of neuronal NE uptake or storage. Cardiac dialysis with omega-conotoxin GVIA offers a new approach for the discrimination between Ca2+ dependent exocytotic and non-exocytotic NE release.
3. Effect of omega-conotoxin GVIA on noradrenaline release from postganglionic sympathetic neurones in rabbit aorta
O A Nedergaard Pharmacol Toxicol. 2000 Jan;86(1):30-5.
The aim of the present work was to examine the effect of the selective N-type calcium blocking agent omega-conotoxin GVIA on stimulation-evoked release of noradrenaline from sympathetic nerves in rabbit isolated aorta with regard to stimulation frequency, extracellular Ca2+ concentration, and transmitter uptake. Rings of rabbit isolated aorta were preloaded with (-)-3H-noradrenaline and the fractional 3H-overflow evoked by electrical-field stimulation was determined by liquid scintillation spectrometry. Omega-conotoxin GVIA (3 x 10(-10)-3 x 10(-8) M) did not alter the spontaneous 3H-outflow. Omega-conotoxin GVIA (3 x 10(-10)-3 x 10(-8) M) caused a slowly developing reduction of stimulation-evoked 3H-overflow at 1 and 30 Hz. The Emax for the omega-conotoxin-induced inhibition was less (70%) at 30 Hz than that (96%) seen at 1 Hz. Short-term incubation with omega-conotoxin GVIA caused a subsequent steady-state inhibition. The inhibitory action of omega-conotoxin GVIA (3 x 10(-10)-3 x 10(-9) M) was inversely related to the extracellular Ca2+ concentration (6.5 x 10(-4)-2.7 x 10(-3) M). Cocaine (3 x 10(-5) M) plus corticosterone (4 x 10(-5) M), neuronal and extraneuronal uptake inhibitors, respectively, did not alter the inhibitory effect of omega-conotoxin GVIA (3 x 10(-9) M) on 3H-overflow evoked by stimulation at a frequency of either 1 or 30 Hz. It is concluded that omega-conotoxin GVIA acts on prejunctional N-type calcium channels to inhibit stimulation-evoked noradrenaline release from sympathetic neurone terminals in rabbit aorta. At a high frequency, another subtype calcium channel may possibly be involved. The action of omega-conotoxin GVIA is independent of neuronal and extraneuronal uptake mechanisms for noradrenaline, but dependent on the amount of Ca2+ to be transported across the neurilemma from the extracellular space into the neurone.
Online Inquiry
Verification code
Inquiry Basket