Boc-D-a-aminosuberic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-D-a-aminosuberic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-007079
CAS number
75113-71-2
Molecular Formula
C13H23NO6
Molecular Weight
289.32
Boc-D-a-aminosuberic acid
IUPAC Name
(2R)-2-[(2-methylpropan-2-yl)oxycarbonylamino]octanedioic acid
Synonyms
Boc-D-Asu-OH; Boc-D-2-Aminooctanedioic acid; Boc D Asu OH
Appearance
White powder
Purity
≥ 99% (HPLC)
Melting Point
122-128°C
Storage
Store at 2-8 °C
InChI
InChI=1S/C13H23NO6/c1-13(2,3)20-12(19)14-9(11(17)18)7-5-4-6-8-10(15)16/h9H,4-8H2,1-3H3,(H,14,19)(H,15,16)(H,17,18)/t9-/m1/s1
InChI Key
WZVLJRPOVUCTFZ-SECBINFHSA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(CCCCCC(=O)O)C(=O)O
1. Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis: Synthesis of Phenanthrenes via Phosphomolybdic Acid as a Catalyst
Yi Chen, Di Liu, Rui Wang, Li Xu, Jingyao Tan, Mao Shu, Lingfeng Tian, Yuan Jin, Xiaoke Zhang, Zhihua Lin J Org Chem. 2022 Jan 7;87(1):351-362. doi: 10.1021/acs.joc.1c02385. Epub 2021 Dec 20.
Compared with the impressive achievements of catalytic carbonyl-olefin metathesis (CCOM) mediated by Lewis acid catalysts, exploration of the CCOM through Brønsted acid-catalyzed approaches remains quite challenging. Herein, we disclose a synthetic protocol for the construction of a valuable polycycle scaffold through the CCOM with the inexpensive, nontoxic phosphomolybdic acid as a catalyst. The current annulations could realize carbonyl-olefin, carbonyl-alcohol, and acetal-alcohol in situ CCOM reactions and feature mild reaction conditions, simple manipulation, and scalability, making this strategy a promising alternative to the Lewis acid-catalyzed COM reaction.
2. The Stephan Curve revisited
William H Bowen Odontology. 2013 Jan;101(1):2-8. doi: 10.1007/s10266-012-0092-z. Epub 2012 Dec 6.
The Stephan Curve has played a dominant role in caries research over the past several decades. What is so remarkable about the Stephan Curve is the plethora of interactions it illustrates and yet acid production remains the dominant focus. Using sophisticated technology, it is possible to measure pH changes in plaque; however, these observations may carry a false sense of accuracy. Recent observations have shown that there may be multiple pH values within the plaque matrix, thus emphasizing the importance of the milieu within which acid is formed. Although acid production is indeed the immediate proximate cause of tooth dissolution, the influence of alkali production within plaque has received relative scant attention. Excessive reliance on Stephan Curve leads to describing foods as "safe" if they do not lower the pH below the so-called "critical pH" at which point it is postulated enamel dissolves. Acid production is just one of many biological processes that occur within plaque when exposed to sugar. Exploration of methods to enhance alkali production could produce rich research dividends.
3. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules
Anmin Zheng, Shang-Bin Liu, Feng Deng Solid State Nucl Magn Reson. 2013 Oct-Nov;55-56:12-27. doi: 10.1016/j.ssnmr.2013.09.001. Epub 2013 Sep 20.
Characterization of the surface acidic properties of solid acid catalysts is a key issue in heterogeneous catalysis. Important acid features of solid acids, such as their type (Brønsted vs. Lewis acid), distribution and accessibility (internal vs. external sites), concentration (amount), and strength of acid sites are crucial factors dictating their reactivity and selectivity. This short review provides information on different solid-state NMR techniques used for acidity characterization of solid acid catalysts. In particular, different approaches using probe molecules containing a specific nucleus of interest, such as pyridine-d5, 2-(13)C-acetone, trimethylphosphine, and trimethylphosphine oxide, are compared. Incorporation of valuable information (such as the adsorption structure, deprotonation energy, and NMR parameters) from density functional theory (DFT) calculations can yield explicit correlations between the chemical shift of adsorbed probe molecules and the intrinsic acid strength of solid acids. Methods that combine experimental NMR data with DFT calculations can therefore provide both qualitative and quantitative information on acid sites.
Online Inquiry
Verification code
Inquiry Basket