Camstatin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Camstatin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Camstatin, an analog of PEP-19, has been found to have enhanced activities binding to and antagonism of calmodulin.

Category
Peptide Inhibitors
Catalog number
BAT-010314
CAS number
1002295-95-5
Molecular Formula
C122H203N39O34
Molecular Weight
2760.19
Camstatin
IUPAC Name
(4S)-5-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[2-[[(2S)-1-amino-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-[[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoic acid
Synonyms
Camstatin; 1002295-95-5; AKOS024458712; PD078973; S-1002295-95-5
Appearance
White Lyophilized Solid
Purity
≥95% by HPLC
Density
1.5±0.1 g/cm3
Sequence
APETERAAVAIQAQFRKFQKKKAGS-NH2
Storage
Store at -20°C
InChI
InChI=1S/C122H203N39O34/c1-12-63(4)95(159-102(177)69(10)143-117(192)94(62(2)3)158-101(176)68(9)139-99(174)66(7)141-104(179)77(38-27-55-136-121(132)133)150-111(186)82(44-49-92(168)169)155-119(194)96(70(11)163)160-113(188)83(45-50-93(170)171)153-116(191)87-40-29-57-161(87)120(195)64(5)127)118(193)154-79(41-46-88(128)164)105(180)142-67(8)100(175)145-80(42-47-89(129)165)112(187)157-84(58-71-30-15-13-16-31-71)114(189)151-78(39-28-56-137-122(134)135)108(183)148-76(37-22-26-54-126)109(184)156-85(59-72-32-17-14-18-33-72)115(190)152-81(43-48-90(130)166)110(185)149-75(36-21-25-53-125)107(182)147-74(35-20-24-52-124)106(181)146-73(34-19-23-51-123)103(178)140-65(6)98(173)138-60-91(167)144-86(61-162)97(131)172/h13-18,30-33,62-70,73-87,94-96,162-163H,12,19-29,34-61,123-127H2,1-11H3,(H2,128,164)(H2,129,165)(H2,130,166)(H2,131,172)(H,138,173)(H,139,174)(H,140,178)(H,141,179)(H,142,180)(H,143,192)(H,144,167)(H,145,175)(H,146,181)(H,147,182)(H,148,183)(H,149,185)(H,150,186)(H,151,189)(H,152,190)(H,153,191)(H,154,193)(H,155,194)(H,156,184)(H,157,187)(H,158,176)(H,159,177)(H,160,188)(H,168,169)(H,170,171)(H4,132,133,136)(H4,134,135,137)/t63-,64-,65-,66-,67-,68-,69-,70+,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,94-,95-,96-/m0/s1
InChI Key
CZNWNBOOELGGSY-QCJADNLESA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCC(=O)N)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NCC(=O)NC(CO)C(=O)N)NC(=O)C(C)NC(=O)C(C(C)C)NC(=O)C(C)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)O)NC(=O)C(C(C)O)NC(=O)C(CCC(=O)O)NC(=O)C3CCCN3C(=O)C(C)N
1. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors
C W Taylor, T J Cardy Biochem J . 1998 Sep 1;334 ( Pt 2)(Pt 2):447-55. doi: 10.1042/bj3340447.
Calmodulin inhibits both inositol 1,4,5-trisphosphate (IP3) binding to, and IP3-evoked Ca2+ release by, cerebellar IP3 receptors [Patel, Morris, Adkins, O'Beirne and Taylor (1997) Proc. Natl. Acad. Sci. U. S.A. 94, 11627-11632]. In the present study, full-length rat type-1 and -3 IP3 receptors were expressed at high levels in insect Spodoptera frugiperda 9 cells and the effects of calmodulin were examined. In the absence of Ca2+, calmodulin caused a concentration-dependent and reversible inhibition of [3H]IP3 binding to type-1 IP3 receptors by decreasing their apparent affinity for IP3. The effect was not reproduced by high concentrations of troponin C, parvalbumin or S-100. Increasing the medium free [Ca2+] ([Ca2+]m) inhibited [3H]IP3 binding to type-1 receptors, but the further inhibition caused by a submaximal concentration of calmodulin was similar at each [Ca2+]m. In the absence of Ca2+, 125I-calmodulin bound to a single site on each type-1 receptor subunit and to an additional site in the presence of Ca2+. There was no detectable binding of 125I-calmodulin to type-3 receptors and binding of [3H]IP3 was insensitive to calmodulin at all [Ca2+]m. Both peptide and conventional Ca2+-calmodulin antagonists affected neither [3H]IP3 binding directly nor the inhibitory effect of calmodulin in the absence of Ca2+, but each caused a [Ca2+]m-dependent reversal of the inhibition of [3H]IP3 binding caused by calmodulin. Camstatin, a peptide that binds to calmodulin equally well in the presence or absence of Ca2+, reversed the inhibitory effects of calmodulin on [3H]IP3 binding at all [Ca2+]m. We conclude that calmodulin specifically inhibits [3H]IP3 binding to type-1 IP3 receptors: the first example of a protein regulated by calmodulin in an entirely Ca2+-independent manner. Inhibition of type-1 IP3 receptors by calmodulin may dynamically regulate their sensitivity to IP3 in response to the changes in cytosolic free calmodulin concentration thought to accompany stimulation of neurones.
2. The influence of phosphorylation on the activity and structure of the neuronal IQ motif protein, PEP-19
James I Morgan, Clive A Slaughter, J Bradley Dickerson, Marc A Morgan, Jie Zheng, Ashutosh Mishra Brain Res . 2006 May 30;1092(1):16-27. doi: 10.1016/j.brainres.2006.03.048.
PEP-19 is a 7.6 kDa neuronally expressed polypeptide that contains a single calmodulin-binding IQ motif. The calmodulin-binding activity of several neuronal IQ motif proteins is regulated by phosphorylation of a conserved serine. We propose that the serine residue within the IQ motif of PEP-19 is phosphorylated, and that phosphorylation modifies the activity of PEP-19. Camstatin, a functionally active 25-residue fragment of PEP-19's IQ motif, binds calmodulin and inhibits neuronal nitric oxide synthase. A truncated camstatin-in which the IQ motif serine is the only phosphorylatable residue-was screened against 42 different kinases. Truncated camstatin is selectively phosphorylated by four isoforms of protein kinase C. Furthermore, treatment of full-length PEP-19 with PKCgamma catalyzes phosphorylation of the same serine residue. Fluorescent anisotropy shows that phosphorylation of camstatin inhibits its binding to calmodulin. NMR solution structures indicate that both camstatin and phospho-camstatin exist in similar dynamic turn-like conformations. This suggests that camstatin's greater affinity for calmodulin is due not to a change in the conformation of the phospho-peptide, but rather, to a disruption of hydrophobic interactions between phospho-camstatin and calmodulin caused by the presence of the hydrophilic phosphate group. The H(alpha) chemical shifts and the circular dichroism spectra of the camstatins are consistent with those of "nascent helices". We submit that PEP-19 is a PKC substrate, and that the phosphorylation state of PEP-19 may play a role in the modulation of calmodulin-dependent signaling.
3. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel
Ferenc Otvös, László Pecze, Norbert Babai, Dénes Budai, Tamás Letoha, Sándor Szalma, Csaba Vizler, Katalin Jósvay, Zoltán Oláh PLoS One . 2007 Jun 20;2(6):e545. doi: 10.1371/journal.pone.0000545.
Ca(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+) or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+)-uptake in intact TRPV1(+) cells, and suggests an extracellular site of inhibition. TRPV1(+), inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+)-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+)-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+)-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2+)-channels but not affecting motoneurons.
Online Inquiry
Verification code
Inquiry Basket