Need Assistance?
  • US & Canada:
    +
  • UK: +

Circulin-E

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Circulin-E is produced by Chassalia parviflora. It probably participates in a plant defense mechanism. It inhibits the cytopathic effects of the human immunodeficiency virus.

Category
Functional Peptides
Catalog number
BAT-013419
Molecular Formula
C148H220N38O42S6
Molecular Weight
3395.94
IUPAC Name
3-[(1R,4S,7S,13R,16S,22S,25S,28S,31S,34S,37R,40S,43S,46S,49S,52R,55S,58R,61S,64S,67S,70S,73S,76S,79R,82S,88S,91S,94S)-25,43,55-tris(4-aminobutyl)-46,61-bis(2-amino-2-oxoethyl)-64-benzyl-22,88-bis[(2S)-butan-2-yl]-49-(2-carboxyethyl)-28-(carboxymethyl)-73-[(1R)-1-hydroxyethyl]-4,70-bis(hydroxymethyl)-34-[(4-hydroxyphenyl)methyl]-31-(1H-imidazol-5-ylmethyl)-91-(1H-indol-3-ylmethyl)-76-(2-methylpropyl)-3,6,9,12,15,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,87,90,93,96-triacontaoxo-40,67,94-tri(propan-2-yl)-2a,3a,6a,7a,98,99-hexathia-2,5,8,11,14,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,86,89,92,95-triacontazahexacyclo[50.44.4.413,58.437,79.016,20.082,86]octahectan-7-yl]propanoic acid
Sequence
KIPCGESCVWIPCLTSVFNCKCENKVCYHD
InChI
InChI=1S/C148H220N38O42S6/c1-14-75(11)117-147(227)185-49-27-36-106(185)141(221)176-100-64-229-230-66-102-136(216)161-85(33-21-24-46-149)121(201)173-101-65-231-234-69-105(175-134(214)98(62-187)171-122(202)88(42-44-111(194)195)158-110(193)61-156-120(100)200)140(220)181-115(73(7)8)144(224)170-93(54-80-59-155-84-32-20-19-31-83(80)84)133(213)183-118(76(12)15-2)148(228)186-50-28-37-107(186)142(222)177-103(138(218)163-90(51-71(3)4)132(212)184-119(77(13)189)146(226)172-99(63-188)135(215)180-114(72(5)6)143(223)169-92(52-78-29-17-16-18-30-78)127(207)167-96(57-109(153)192)130(210)174-102)67-232-233-68-104(178-145(225)116(74(9)10)179-124(204)86(34-22-25-47-150)159-129(209)95(56-108(152)191)166-123(203)89(162-137(101)217)43-45-112(196)197)139(219)164-91(53-79-38-40-82(190)41-39-79)126(206)165-94(55-81-60-154-70-157-81)128(208)168-97(58-113(198)199)131(211)160-87(125(205)182-117)35-23-26-48-151/h16-20,29-32,38-41,59-60,70-77,85-107,114-119,155,187-190H,14-15,21-28,33-37,42-58,61-69,149-151H2,1-13H3,(H2,152,191)(H2,153,192)(H,154,157)(H,156,200)(H,158,193)(H,159,209)(H,160,211)(H,161,216)(H,162,217)(H,163,218)(H,164,219)(H,165,206)(H,166,203)(H,167,207)(H,168,208)(H,169,223)(H,170,224)(H,171,202)(H,172,226)(H,173,201)(H,174,210)(H,175,214)(H,176,221)(H,177,222)(H,178,225)(H,179,204)(H,180,215)(H,181,220)(H,182,205)(H,183,213)(H,184,212)(H,194,195)(H,196,197)(H,198,199)/t75-,76-,77+,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,114-,115-,116-,117-,118-,119-/m0/s1
InChI Key
OQFFATFPYICMLY-WHBDPGKYSA-N
Canonical SMILES
CCC(C)C1C(=O)N2CCCC2C(=O)NC3CSSCC4C(=O)NC(C(=O)NC5CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N6CCCC6C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)CCCCN)CC(=O)O)CC7=CN=CN7)CC8=CC=C(C=C8)O)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC5=O)CCC(=O)O)CC(=O)N)CCCCN)C(C)C)C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N4)CC(=O)N)CC9=CC=CC=C9)C(C)C)CO)C(C)O)CC(C)C)C(C)CC)CC1=CNC2=CC=CC=C21)C(C)C)NC(=O)C(NC(=O)C(NC(=O)CNC3=O)CCC(=O)O)CO)CCCCN
1. Circular RNA migration in agarose gel electrophoresis
Brian T Abe, R Alexander Wesselhoeft, Robert Chen, Daniel G Anderson, Howard Y Chang Mol Cell. 2022 May 5;82(9):1768-1777.e3. doi: 10.1016/j.molcel.2022.03.008. Epub 2022 Mar 30.
Circular RNAs are garnering increasing interest as potential regulatory RNAs and a format for gene expression. The characterization of circular RNA using analytical techniques commonly employed in the literature, such as gel electrophoresis, can, under differing conditions, yield different results when attempting to distinguish circular RNA from linear RNA of similar molecular weights. Here, we describe circular RNA migration in different conditions, analyzed by gel electrophoresis and high-performance liquid chromatography (HPLC). We characterize key parameters that affect the migration pattern of circular RNA in gel electrophoresis systems, which include gel type, electrophoresis time, sample buffer composition, and voltage. Finally, we demonstrate the utility of orthogonal analytical tests for circular RNA that take advantage of its covalently closed structure to further distinguish circular RNA from linear RNA following in vitro synthesis.
2. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling
Xinya Gao, et al. Nat Cell Biol. 2021 Mar;23(3):278-291. doi: 10.1038/s41556-021-00639-4. Epub 2021 Mar 4.
Activated EGFR signalling drives tumorigenicity in 50% of glioblastoma (GBM). However, EGFR-targeting therapy has proven ineffective in treating patients with GBM, indicating that there is redundant EGFR activation. Circular RNAs are covalently closed RNA transcripts that are involved in various physiological and pathological processes. Herein, we report an additional activation mechanism of EGFR signalling in GBM by an undescribed secretory E-cadherin protein variant (C-E-Cad) encoded by a circular E-cadherin (circ-E-Cad) RNA through multiple-round open reading frame translation. C-E-Cad is overexpressed in GBM and promotes glioma stem cell tumorigenicity. C-E-Cad activates EGFR independent of EGF through association with the EGFR CR2 domain using a unique 14-amino-acid carboxy terminus, thereby maintaining glioma stem cell tumorigenicity. Notably, inhibition of C-E-Cad markedly enhances the antitumour activity of therapeutic anti-EGFR strategies in GBM. Our results uncover a critical role of C-E-Cad in stimulating EGFR signalling and provide a promising approach for treating EGFR-driven GBM.
3. Reverse-transcription PCR (RT-PCR)
Julia Bachman Methods Enzymol. 2013;530:67-74. doi: 10.1016/B978-0-12-420037-1.00002-6.
RT-PCR is commonly used to test for genetic diseases and to characterize gene expression in various tissue types, cell types, and over developmental time courses. This serves as a form of expression profiling, but typically as a candidate approach. RT-PCR is also commonly used to clone cDNAs for further use with other molecular biology techniques (e.g., see Oligo(dT)-primed RT-PCR isolation of polyadenylated RNA degradation intermediates and Circularized RT-PCR (cRT-PCR): analysis of RNA 5' ends, 3' ends, and poly(A) tails).
Online Inquiry
Verification code
Inquiry Basket