1. Cisplatin mediates selective downstream hydrolytic cleavage of Met-(Gly)(n)-His segments (n=1,2) in methionine- and histidine-containing peptides: the role of ammine loss trans to the initial Pt-S(Met) anchor in facilitating amide hydrolysis
Oliver Hohage, William S Sheldrick J Inorg Biochem. 2006 Sep;100(9):1506-13. doi: 10.1016/j.jinorgbio.2006.03.017. Epub 2006 May 16.
The pH- and time-dependent reactions of the antitumor drug cisplatin, cis-[PtCl(2)(NH(3))(2)], with the methionine- and histidine-containing pentapeptides Ac-Met-Gly-His-Gly-Gly-OH, Ac-Met-Gly-Gly-His-Gly-OH and Ac-Gly-Met-Gly-His-Gly-OH (Gly=glycyl, Met=L-methionyl, His=L-histidyl) at 313K have been investigated by high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. Cisplatin mediates a rapid "downstream" hydrolytic cleavage of the Met-Gly amide bond in weakly acid solution (pH < or =5) for all three peptides, leading to release of H-Gly-His-Gly-Gly-OH, H-Gly-Gly-His-Gly-OH and H-Gly-His-Gly-OH, respectively, and formation of kappa(2)S,N(M) chelate complexes of the methionine-containing residuals Ac-Met-OH or Ac-Gly-Met-OH. An alternative reaction pathway affords tridentate kappa(3)S,N(M),N(imidazole) macrochelates of the original pentapeptide following ammine loss. The downstream cleavage pathway is competitive with the likewise cisplatin-mediated upstream cleavage of the Ac-Gly linkage in the pentapeptide Ac-Gly-Met-Gly-His-Gly-OH. This leads to formation of both the kappa(3)S,N(M),N(G1) complex of H-Gly-Met-Gly-His-Gly-OH due to upstream cleavage and the analogous tridentate complex for H-Gly-Met-OH due to initial downstream loss of H-Gly-His-Gly-OH followed by upstream loss of acetic acid. As downstream cleavage is not observed for Ac-(Gly)(2)-Met-(Gly)(2)-OH under similar conditions, it may be concluded that rapid histidine imidazole substitution of the ammine ligand in trans-position to an anchoring methionine S atom must assist hydrolytic cleavage of the Met-Gly amide bond.
2. Novel method for the synthesis of urea backbone cyclic peptides using new Alloc-protected glycine building units
Mattan Hurevich, Yftah Tal-Gan, Shoshana Klein, Yaniv Barda, Alexander Levitzki, Chaim Gilon J Pept Sci. 2010 Apr;16(4):178-85. doi: 10.1002/psc.1218.
Cyclization of bioactive peptides, utilizing functional groups serving as natural pharmacophors, is often accompanied with loss of activity. The backbone cyclization approach was developed to overcome this limitation and enhance pharmacological properties. Backbone cyclic peptides are prepared by the incorporation of special building units, capable of forming amide, disulfide and coordinative bonds. Urea bridge is often used for the preparation of cyclic peptides by connecting two amine functionalized side chains. Here we present urea backbone cyclization as an additional method for the preparation of backbone cyclic peptide libraries. A straightforward method for the synthesis of crystalline Fmoc-N(alpha) [omega-amino(Alloc)-alkyl] glycine building units is presented. A set of urea backbone cyclic Glycogen Synthase Kinase 3 analogs was prepared and assessed for protein kinase B inhibition as anticancer leads.
3. The aspartimide problem in Fmoc-based SPPS. Part I
M Mergler, F Dick, B Sax, P Weiler, T Vorherr J Pept Sci. 2003 Jan;9(1):36-46. doi: 10.1002/psc.430.
A variety of Asp beta-carboxy protecting groups, Hmb backbone protection and a range of Fmoc cleavage protocols have been employed in syntheses of the model hexapeptide H-VKDGYI-OH to investigate the aspartimide problem in more detail. The extent of formation of aspartimide and aspartimide-related by-products was determined by RP-HPLC. This study included three new Fmoc-Asp-OH derivatives: the beta-(4-pyridyl-diphenylmethyl) and beta-(9-phenyl-fluoren-9-yl) esters and also the orthoester Fmoc-beta-(4-methyl-2,6,7-trioxabicyclo[2.2.2]-oct-1-yl)-alanine. 3-Methylpent-3-yl protection of the Asp side chain resulted in significant improvements with respect to aspartimide formation. Complete suppression was achieved using the combination OtBu side chain protection and Hmb backbone protection for the preceding Gly residue.