1. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria
Edit Urbán, Elisabeth Nagy, Tibor Pál, Agnes Sonnevend, J Michael Conlon Int J Antimicrob Agents. 2007 Mar;29(3):317-21. doi: 10.1016/j.ijantimicag.2006.09.007. Epub 2006 Dec 28.
The activities of two antimicrobial peptides belonging to the temporin family (temporin-1DRa from Rana draytonii and temporin-1Va from Rana virgatipes) and two peptides with structural similarity to the bee venom peptide melittin (AR-23 from Rana tagoi and RV-23 from R. draytonii) were evaluated against a range of reference strains and clinical isolates of anaerobic bacteria. These peptides were selected because they show broad-spectrum growth inhibitory activity against reference strains of several medically important aerobic microorganisms and against clinical isolates of methicillin-resistant Staphylococcus aureus. All peptides showed relatively high potency (minimum inhibitory concentration (MIC) =25 microM) against the Gram-positive bacilli Propionibacterium acnes and Clostridium tertium and the Gram-positive cocci Peptostreptococcus anaerobius. Activity was lower and more variable against Clostridium septicum, Clostridium perfringens and Peptostreptococcus asaccharolyticus. Growth of the Gram-negative bacilli Bacteroides fragilis and Fusobacterium spp. was poorly inhibited, but all the peptides were active (MIC=25 microM) against Prevotella melaninogenica. The clinical utility of the melittin-related peptides is limited by their toxicities, but temporin-1DRa and temporin-1Va have relatively low haemolytic activity against human erythrocytes and so represent candidates for drug development, particularly for topical therapy of infected surface lesions.
2. A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica
J Michael Conlon, et al. Regul Pept. 2004 May 15;118(3):135-41. doi: 10.1016/j.regpep.2003.12.003.
Nine peptides displaying varying degrees of antimicrobial activity were extracted from the skin of the Hokkaido frog, Rana pirica. Five structurally related peptides were identified as members of the brevinin-2 family. These peptides were active against reference strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae) and Gram-positive (Staphlococcus aureus) bacteria but displayed relatively low hemolytic activity. The most abundant peptide, brevinin-2PRa (680 nmol/g weight of dry skin) showed high potency [minimal inhibitory concentration (MIC) values between 6 and 12 microM] against a range of clinical isolates of P. aeruginosa. In addition, activity was unaffected by NaCl concentrations up to 200 mM. Cladistic analysis based on the primary structures of brevinin-2 peptides supports a close phylogenetic relationship between R. pirica and Japanese mountain brown frog Rana ornativentris. One peptide of the ranatuerin-2 family and one strongly hemolytic peptide of the brevinin-1 family were also isolated from the extract along with two members of the temporin family, temporin-1PRa (ILPILGNLLNGLL.NH(2)) and temporin-1PRb (ILPILGNLLNSLL.NH(2)) that atypically lacked basic amino acid residues and showed only very weak antimicrobial and hemolytic activity.
3. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide
Feten Abbassi, Zahid Raja, Bruno Oury, Elodie Gazanion, Christophe Piesse, Denis Sereno, Pierre Nicolas, Thierry Foulon, Ali Ladram Biochimie. 2013 Feb;95(2):388-99. doi: 10.1016/j.biochi.2012.10.015. Epub 2012 Oct 29.
Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.